分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

然后对于求这样单个的gcd(x,y)=k的,我们通常采用莫比乌斯反演

但是,时间复杂度是O(n*(n/k))的,当复杂度很坏的时候,当k=1时,退化到O(n^2),超时

然后进行分块优化,时间复杂度是O(n*sqrt(n))

#include<cstdio>
#include<cstring>
#include<queue>
#include<cstdlib>
#include<algorithm>
#include<vector>
#include<cmath>
using namespace std;
typedef long long LL;
const int N=5e4+;
const int INF=0x3f3f3f3f;
bool vis[N];
int prime[N],mu[N],cnt;
void getmu()
{
mu[] = ;
for(int i=; i<=N-; i++)
{
if(!vis[i])
{
prime[++cnt] = i;
mu[i] = -;
}
for(int j=; j<=cnt&&i*prime[j]<=N-; j++)
{
vis[i*prime[j]] = ;
if(i%prime[j]) mu[i*prime[j]] = -mu[i];
else
{
mu[i*prime[j]] = ;
break;
}
}
}
}
LL solve(int n,int m,int k){
n/=k,m/=k;
int l=min(n,m);
LL ans=;
for(int i=,j;i<=l;i=j+){
j=min(n/(n/i),m/(m/i));
ans+=1ll*(mu[j]-mu[i-])*(n/i)*(m/i);
}
return ans;
}
int main(){
getmu();
for(int i=;i<=N-;++i)mu[i]+=mu[i-];
int T;
scanf("%d",&T);
while(T--){
int a,b,c,d,k;
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("%lld\n",solve(b,d,k)-solve(b,c-,k)-solve(a-,d,k)+solve(a-,c-,k));
}
return ;
}

BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演的更多相关文章

  1. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  2. [bzoj2301][HAOI2011]Problem B —— 莫比乌斯反演+容斥原理

    题意 给定a, b, c, d, k,求出: \[\sum_{i=a}^b\sum_{j=c}^d[gcd(i, j) = k]\] 题解 为方便表述,我们设 \[calc(\alpha, \beta ...

  3. BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  4. [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

    对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...

  5. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

  6. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  7. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  8. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  9. [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演

    1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...

随机推荐

  1. call_user_func

    (PHP 4, PHP 5) call_user_func — 把第一个参数作为回调函数调用 mixed call_user_func ( callable $callback [, mixed $p ...

  2. Windows Linux HackMacintosh

    我想把Windows Linux HackMacintosh三类系统融入到一台笔记本上的神经病应该不多. 我的电脑就一个SATA硬盘,BIOS还不是EFI的.一共同时安装了Windows 8.1.Op ...

  3. Asp.Net细节性问题精萃

    1.<%=…%>与<%#… %>的区别: 答:<%=…%>是在程序执行时调用,<%#… %>是在DataBind()方法之后被调用 2.控件接收哪些类型 ...

  4. pc telnet 登录 android 系统

    前提是:1) 手机已经root,且装有busybox,2) 还装有至少一款terminal(模拟终端)软件,手机连wifi路由器.3) 还要有一些基础常识,比如linux命令,telnet.这里模拟终 ...

  5. JSON对象的stringify()和parse()方法

    1.stringify() ---- JavaScript对象序列化为JSON字符串 eg1. var book = {title: 'JS', authors: ['Van'], edition:3 ...

  6. normalize.css介绍

    Normalize.css 只是一个很小的CSS文件,但它在默认的HTML元素样式上提供了跨浏览器的高度一致性.相比于传统的CSS reset,Normalize.css是一种现代的.为HTML5准备 ...

  7. Sybase ASE无响应的又一个情况

    昨天下午,客户那边的系统管理员给我电话,说有套系统的SYBASE数据库最近有点怪,总是时不时莫名其妙地就忽然卡死,有可能一下子就自动恢复了,也有可能后面一直卡住,只好重启.根据客户反映的状况,初步判断 ...

  8. JAVA TCP/IP Socket通信机制以及应用

    关于局域网通信(同一wifi下,自己电脑当服务端,同一网络段) 1.例如192.168.1.x,只有x位不相同视为同一网络段 2.当具备了以上条件,即可编写服务端代码,服务端的机制. 3.Server ...

  9. fatal error C1853

    http://myswirl.blog.163.com/blog/static/513186422011827105224739/ 预编译头文件来自编译器的早期版本,或者预编译头为 C++ 而在 C ...

  10. Linux数组array基础

    Linux数组array基础[${a[*]}和$a的区别] Bash中,数组变量的赋值有两种方法: (1) name = (value1 ... valuen) 此时下标从0开始 (2) name[i ...