Description
 

Problem A
Tribbles
Input: Standard Input

Output: Standard Output

GRAVITATIONn.
"The tendency of all bodies to approach one another with a strength
proportion to the quantity of matter they contain -- the quantity of
matter they contain being ascertained by the strength of their tendency
to approach one another. This is a lovely and edifying illustration of
how science, having made A the proof of B, makes B the proof of A."

Ambrose Bierce

You have a population of kTribbles. This particular species of Tribbles live for exactly one day and then die. Just before death, a single Tribble has the probability Pi of giving birth to i more Tribbles. What is the probability that after m generations, everyTribble will be dead?

Input
The first line of input gives the number of cases, NN test cases follow. Each one starts with a line containing n (1<= n<=1000) ,k (0<= k<=1000) and m (0<= m<=1000) . The next n lines will give the probabilities P0P1, ...,Pn-1.

Output
For each test case, output one line containing "Case #x:" followed by the answer, correct up to an absolute or relative error of 10-6.

Sample Input

Sample Output

4 
3 1 1
0.33 
0.34 
0.33 
3 1 2 
0.33 
0.34 
0.33 
3 1 2 
0.5 
0.0 
0.5 
4 2 2
0.5 
0.0 
0.0 
0.5
Case #1: 0.3300000 
Case #2: 0.4781370 
Case #3: 0.6250000 
Case #4: 0.3164062 

 

题意:有K只麻球,每只只活一天,临死前会产仔,产i只小麻球的 概率为pi,问m天后所有麻球全部死亡的概率;

思路:因为每只麻球都是相互独立的,所以只需求刚开始只有一只麻球,m天后其后代全部死亡的概率f[m],然后k只麻球最后全部死亡的概率就是 pow(f[m],k);

对于一只麻球,m天全死亡包含第一天、第二天、、、、、第m天死亡事件,因此一只麻球第i天死亡的概率f[i] = p0 + p1*f[i-1] + p2*f[i-2]^2+.......+ pn-1*f[i-1]^(n-1);

 #include<stdio.h>
#include<math.h>
#include<string.h>
int main()
{
int test;
scanf("%d",&test);
for(int item = ; item <= test; item++)
{
int n,k,m;
double p[],f[];
scanf("%d %d %d",&n,&k,&m);
for(int i = ; i < n; i++)
scanf("%lf",&p[i]); f[] = ;
f[] = p[];
for(int i = ; i <= m; i++)
{
f[i] = ;
for(int j = ; j < n; j++)
f[i] += p[j] * pow(f[i-],j);
}
printf("Case #%d: %.7lf\n",item,pow(f[m],k));
}
return ;
}

Tribles(概率)的更多相关文章

  1. UVA - 11021 Tribles 概率dp

    题目链接: http://vjudge.net/problem/UVA-11021 Tribles Time Limit: 3000MS 题意 有k只麻球,每只活一天就会死亡,临死之前可能会出生一些新 ...

  2. UVA 11021 - Tribles(概率递推)

    UVA 11021 - Tribles 题目链接 题意:k个毛球,每一个毛球死后会产生i个毛球的概率为pi.问m天后,全部毛球都死亡的概率 思路:f[i]为一个毛球第i天死亡的概率.那么 f(i)=p ...

  3. UVA 11021 - Tribles(概率)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=481&page=s ...

  4. UVa 11021 Tribles (概率DP + 组合数学)

    题意:有 k 只小鸟,每只都只能活一天,但是每只都可以生出一些新的小鸟,生出 i 个小鸟的概率是 Pi,问你 m 天所有的小鸟都死亡的概率是多少. 析:先考虑只有一只小鸟,dp[i] 表示 i 天全部 ...

  5. UVA11021 Tribles 概率dp

    题目传送门 题意:开始有$k$只兔子,每只都是活一天就死,每只死前都会有$pi$的概率生出$i$只兔子.求$m$天后兔子死光的概率. 思路: 设$f[i]$为一只兔子在第i天死完的概率,那么答案就是$ ...

  6. UVA 11021 C - Tribles(概率DP)

    记忆化就可以搞定,比赛里都没做出来,真的是态度有问题啊... #include <iostream> #include<cstdio> #include<cstring& ...

  7. UVA11021 Tribles[离散概率 DP]

    UVA - 11021 Tribles GRAVITATION, n. “The tendency of all bodies to approach one another with a stren ...

  8. uva11021 - Tribles(概率)

    11021 - Tribles GRAVITATION, n.“The tendency of all bodies to approach one another with a strengthpr ...

  9. 概率dp - UVA 11021 Tribles

    Tribles Problem's Link: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=33059 Mean: 有k个细 ...

随机推荐

  1. 使用fastjson前台报406的问题解决方法

    返回的json数据前台页面报406,而后台没有报错,下面为解决方法 <?xml version="1.0" encoding="UTF-8"?> & ...

  2. JAVA 原始国际化例子

    import java.text.MessageFormat; import java.util.Locale; import java.util.ResourceBundle; public cla ...

  3. Objective-C:KVO

    @import url(http://i.cnblogs.com/Load.ashx?type=style&file=SyntaxHighlighter.css); @import url(/ ...

  4. HTML5 文件域+FileReader 分段读取文件并上传到服务器(六)

    说明:使用Ajax方式上传,文件不能过大,最好小于三四百兆,因为过多的连续Ajax请求会使后台崩溃,获取InputStream中数据会为空,尤其在Google浏览器测试过程中. 1.简单分段读取文件为 ...

  5. c# try..... catch

    功能说明:在此例中,try 块包含对可能导致异常的ProcessString()方法的调用.catch子句包含仅在屏幕上显示消息的异常处理程序,当从ProcessString内部调用throw语句时, ...

  6. 1 加到 100 的 时间复杂度 C#.

    //1 加到 100 的 时间复杂度: ; ; ; i <= n; i++){ sum += i; } T() = ; //Initialize 'n'. T() = ; //Initializ ...

  7. requirejs+anjularjs+express框架

    1.目录 2.首页login.html如下: <!DOCTYPE html><html> <head> <title>登录界面</title> ...

  8. phpstrom+xdebug调试PHP代码

    众所周知开发PHP的IDE种类繁多,然而开发PHP并不能像开发其他语言一样,调试PHP代码对诸多新手来说,搭建调试环境就比较麻烦!其实哈,我发现NuSphere-phped-16.0很强大,集成了很强 ...

  9. Bootstrap_Javascript_提示框

    一. 结构分析 在Bootstrap框架中的提示框,结构非常简单,常常使用的是按钮<button>标签或者链接<a>标签来制作.不管是使用按钮还是链接来制作提示框,他们都有一个 ...

  10. Window.onload事件

    window.onload是一个事件,当文档加载完成之后就会触发该事件,可以为此事件注册事件处理函数,并将要执行的脚本代码放在事件处理函数中,于是就可以避免获取不到对象的情况