棋盘问题(dp)
棋盘问题
题目描述
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
题解
状压dp dp[i][j]表示第I行此时状态为j的方案数.j表示列的状态
代码
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int cnt,ans,n,k,dp[][<<];
char mp[][];
int main(){
while(scanf("%d%d",&n,&k)!=EOF){
ans=;
memset(dp,,sizeof(dp));
if(n==-&&k==-)break;
for(int i=;i<=n;i++)
scanf("%s",mp[i]);
dp[][]=;
for(int i=;i<=n;i++){
for(int j=;j<(<<n);j++){
for(int p=;p<n;p++){
if(mp[i][p]=='#'&&(j&(<<p))==)
dp[i][j|(<<p)]+=dp[i-][j];
} dp[i][j]+=dp[i-][j];
}
}
for(int j=;j<(<<n);j++){
cnt=;int i=j;
for(;i;i-=i&-i)cnt++;//i&(-i)一直找最后一个1
if(cnt==k)ans+=dp[n][j];
}
printf("%d\n",ans);
}
return ;
}
棋盘问题(dp)的更多相关文章
- BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )
对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...
- P1169 [ZJOI2007]棋盘制作 DP悬线法
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...
- P1436 棋盘分割[dp]
题目描述 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘.(每次 ...
- [luogu]P1169 [ZJOI2007]棋盘制作[DP][单调栈]
[luogu]P1169 [ZJOI]棋盘制作 ——!x^n+y^n=z^n 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋 ...
- bzoj1057: [ZJOI2007]棋盘制作 [dp][单调栈]
Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应 ...
- T2980 LR棋盘【Dp+空间/时间优化】
Online Judge:未知 Label:Dp+滚动+前缀和优化 题目描述 有一个长度为1*n的棋盘,有一些棋子在上面,标记为L和R. 每次操作可以把标记为L的棋子,向左移动一格,把标记为R的棋子, ...
- POJ 1191 棋盘分割(DP)
题目链接 大体思路看,黑书...其他就是注意搞一个in数组,这样记忆化搜索,貌似比较快. #include <cstdio> #include <cstring> #inclu ...
- NOI1999 JZYZOJ1289 棋盘分割 dp 方差的数学结论
http://172.20.6.3/Problem_Show.asp?id=1289 除了下标一坨一坨屎一样挺恶心其他都还挺容易的dp,这道题才发现scanf保留小数位是四舍五入的,惊了. f[k][ ...
- BZOJ 1813 [Cqoi2017]小Q的棋盘 ——树形DP
唔,貌似以前做过这样差不多的题目. 用$f(i,0/1)$表示从某一点出发,只能走子树的情况下回到根.不回到根的最多经过不同的点数. 然后就可以DP辣 #include <map> #in ...
随机推荐
- Netty和Akka有什么不同?
摘要: Akka is a concurrency framework built around the notion of actors and composable futures, Akka w ...
- 动态规划—最长回文子串LEETCODE第5题深度剖析
动态规划对于笔者来说有很重要的意义 一.题目如下: 对于此类题目,笔者常用的的办法是先做个暴力解题思路,然后再对暴力法进行优化. 二.暴力法 //字串遍历 public static String l ...
- Java到底是值传递还是引用传递
什么是按值传递,什么是按引用传递 按值调用(call by value) : 在参数传递过程中,形参和实参占用了两个完全不同的内存空间.形参所存储的内容是实参存储内容的一份拷贝. 按引用调用:在参数传 ...
- DBA总结
HA MHA(1)从宕机崩溃的master保存二进制日志事件(binlog events);(2)识别含有最新更新的slave:(3)应用差异的中继日志(relay log)到其他的slave:(4) ...
- mysql统计功能和数据库information_schema/performance_schema
1.去重统计数据表行数: select count(distinct col_name) from table_name; 2.统计行数 select count(*) from table_name ...
- [转]JAVA集合
1.线程安全 线程安全就是说多线程访问同一代码,不会产生不确定的结果. 2.List类和Set类List类和Set类是Collection集合接口的子接口.Set子接口:无序,不允许重复.List子接 ...
- [CSS3] Define Form Element States with CSS Form Pseudo Classes
Using just semantic CSS Pseudo-Classes you can help define important states for form elements that e ...
- 编资源bundle时图片文件变成tiff的解决方法
一般,编写SDK的时候,如果SDK还带了一些资源文件,那么最理想的是将资源文件也打包成为bundle给应用方一起使用.而在编资源bundle时,有时会发现编译好后的图片文件从png转成了tiff,这样 ...
- INAPP登陆调用的FB接口
public function login_get (){ $this->load->helper ( 'auth' ); $redirectUrl = $this->input-& ...
- MAC Intellij IDEA 经常使用快捷键(本人亲自測试过)
MAC Intellij IDEA 经常使用快捷键 keymap 设置 MAC OS X 10.5+ alt+f7查找变量方法使用的地方 F3加入书签 Ctrl + O快捷覆写方法 Alt + F3 ...