洛谷 P3807 【模板】卢卡斯定理
题目背景
这是一道模板题。
题目描述
给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105)
求 C_{n+m}^{m}\ mod\ pCn+mm mod p
保证P为prime
C表示组合数。
一个测试点内包含多组数据。
输入输出格式
输入格式:
第一行一个整数T(T\le 10T≤10),表示数据组数
第二行开始共T行,每行三个数n m p,意义如上
输出格式:
共T行,每行一个整数表示答案。
输入输出样例
2
1 2 5
2 1 5
3
3
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 100000
using namespace std;
int T,p;
long long sum[MAXN];
long long pow(long long a,long long x,long long p){
long long s=%p;
for(;x;x>>=){
if(x&) s=s*a%p;
a=a*a%p;
}
return s;
}
long long C(long long n,long long m){
if(m>n) return ;
return sum[n]*pow(sum[m],p-,p)%p*pow(sum[n-m],p-,p)%p;
}
long long Lucas(long long n,long long m){
if(m==) return ;
return C(n%p,m%p)*Lucas(n/p,m/p)%p;
}
int main(){
scanf("%d",&T);
while(T--){
int n,m;
scanf("%d%d%d",&n,&m,&p);
sum[]=;
for(int i=;i<=p;i++) sum[i]=sum[i-]*i%p;
cout<<Lucas(n+m,n)<<endl;
}
}
洛谷 P3807 【模板】卢卡斯定理的更多相关文章
- 洛谷.3807.[模板]卢卡斯定理(Lucas)
题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...
- 【数论】卢卡斯定理模板 洛谷P3807
[数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷——P3807 【模板】卢卡斯定理
P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ ...
- 【刷题】洛谷 P3807 【模板】卢卡斯定理
题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) ...
- 【洛谷P3807】(模板)卢卡斯定理
卢卡斯定理 把n写成p进制a[n]a[n-1][n-2]…a[0],把m写成p进制b[n]b[n-1][n-2]…b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])* ...
- [洛谷P4720] [模板] 扩展卢卡斯
题目传送门 求组合数的时候,如果模数p是质数,可以用卢卡斯定理解决. 但是卢卡斯定理仅仅适用于p是质数的情况. 当p不是质数的时候,我们就需要用扩展卢卡斯求解. 实际上,扩展卢卡斯=快速幂+快速乘+e ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
随机推荐
- Convert Sorted List to Balanced Binary Search Tree leetcode
题目:将非递减有序的链表转化为平衡二叉查找树! 参考的博客:http://blog.csdn.net/worldwindjp/article/details/39722643 利用递归思想:首先找到链 ...
- ERROR StatusLogger Log4j2 could not find a logging implementation. Please add log4j-core to the classpath
问题: ERROR StatusLogger Log4j2 could not find a logging implementation. Please add log4j-core to the ...
- QT5:总结篇 控件集合
一.Layouts 二.Spacers 三.Buttons 四.Item Views(Model-Based) 五.Item Widgets(Item-Based) 六.Containers 七.In ...
- vmware linux虚拟机与本地物理机共享文件夹
cd /mnt/hgfs 使用Vmware安装了linux虚拟机后,开发时,为了方便文件的传输等,因此需要使用共享文件夹,减少工作量.共享文件夹需要用到vmware提供的vmware tools工具, ...
- 内存区--Java
一.概述 对于 Java 程序员来说,在虚拟机自动内存管理机制下,不再需要像C/C++程序开发程序员这样为内一个 new 操作去写对应的 delete/free 操作,不容易出现内存泄漏和内存溢出问题 ...
- KVM中的网络简介(qemu-kvm)
emu-kvm主要向客户机提供了如下4种不同模式的网络: 1)基于网桥(bridge)的虚拟网卡 2)基于NAT(Network Addresss Translation)的虚拟网络 3)QEMU内置 ...
- JavaScript中函数的调用
JavaScript中函数的调用 制作人:全心全意 在JavaScript中,函数定义后并不会自动执行,要执行一个函数需要在特定的位置调用该函数,调用函数需要创建调用语句,调用语句包含函数名称和参数. ...
- 【HIHOCODER 1575】 两个机器人(BFS)
描述 一个N × M的2D迷宫中有两个机器人.机器人A在迷宫左上角,只能向右或向下移动:机器人B在迷宫右下角,只能向左或向上移动.机器人不能移动到迷宫外.此外,由于奇怪的同步机制,这两个机器人只能同时 ...
- Java基础学习总结(91)——阿里巴巴Java开发手册公开版
1.不要嫌名字长 无论是方法,变量,还是函数的取名,不要嫌弃名称太长,只要能够表示清楚含义就可以了. 2.String[] args而不是String args[] 中括号是数组类型的一部分,数组定义 ...
- Mongodb 断电或者强制关机之后
Mongodb相信大家都比较熟悉了,将它注册为服务什么的就不说了,网上到处都是.在公司用的过程中,我发现在意外断电,或者强制关机之后,启动服务时候就会报错,找了很久,试了很多种方法,才发现,它有个自带 ...