A. Primes or Palindromes?
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Rikhail Mubinchik believes that the current definition of prime numbers is obsolete as they are too complex and unpredictable. A palindromic number is another matter. It is aesthetically pleasing, and it has a number of remarkable properties. Help Rikhail to
convince the scientific community in this!

Let us remind you that a number is called prime if it is integer larger than one, and is not divisible by any positive integer other than itself and one.

Rikhail calls a number a palindromic if it is integer, positive, and its decimal representation without leading zeros is a palindrome, i.e. reads the same from left to right and right to left.

One problem with prime numbers is that there are too many of them. Let's introduce the following notation: π(n) — the number of primes
no larger than nrub(n) —
the number of palindromic numbers no larger than n. Rikhail wants to prove that there are a lot more primes than palindromic ones.

He asked you to solve the following problem: for a given value of the coefficient A find the maximum n,
such that π(n) ≤ A·rub(n).

Input

The input consists of two positive integers pq,
the numerator and denominator of the fraction that is the value of A ().

Output

If such maximum number exists, then print it. Otherwise, print "Palindromic tree is better than splay tree" (without the quotes).

Sample test(s)
input
1 1
output
40
input
1 42
output
1
input
6 4
output
172

能够发现不可能无解,极限情况n不大

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+llabs(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
bool is_prime(int x)
{
if (x==1) return 0;
Fork(i,2,sqrt(x))
{
if (x%i==0) return 0;
}
return 1;
}
const int MAXN =10000000;
int P[MAXN],siz=0,b[MAXN]={0};
void make_prime(int n)
{
Fork(i,2,n)
{
if (!b[i])
{
P[++siz]=i;
}
For(j,siz)
{
if (P[j]*i>n) break;
b[P[j]*i]=1;
if (i%P[j]==0) break;
}
}
}
bool is_pal(int x)
{
char s[10];
sprintf(s,"%d",x);
int p=0,q=strlen(s)-1;
while(p<q) if (s[p]!=s[q]) return 0;else ++p,--q;
return 1;
} bool B[MAXN]={0};
bool make_pal(int n)
{
char s[20];
For(i,10000)
{ sprintf(s,"%d",i);
int m=strlen(s);
int p=m-1;
for(int j=m;p>-1;j++,p--) s[j]=s[p]; int x;
sscanf(s,"%d",&x);
if (x<=n) B[x]=1; for(int j=m;j<=2*m-1;j++) s[j]=s[j+1];
sscanf(s,"%d",&x);
if (x<=n) B[x]=1; }
} int main()
{
// freopen("A.in","r",stdin);
// freopen(".out","w",stdout);
int p,q;
cin>>p>>q;
make_prime(MAXN-1);
make_pal(MAXN-1);
int x1=0,x2=0,n=MAXN-1,ans=1,t=1;
For(i,n)
{
if (i==P[t]) x1++,t++;
if (B[i]) x2++;
if ((ll)(x1)*q<=(ll)(x2)*p) ans=i;
}
cout<<ans<<endl;
return 0;
}

CF 568A(Primes or Palindromes?-暴力推断)的更多相关文章

  1. Codeforces Round #315 (Div. 1) A. Primes or Palindromes? 暴力

    A. Primes or Palindromes?Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3261 ...

  2. Codeforces Round #315 (Div. 2) C. Primes or Palindromes? 暴力

    C. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes input st ...

  3. Codeforces Round #315 (Div. 2C) 568A Primes or Palindromes? 素数打表+暴力

    题目:Click here 题意:π(n)表示不大于n的素数个数,rub(n)表示不大于n的回文数个数,求最大n,满足π(n) ≤ A·rub(n).A=p/q; 分析:由于这个题A是给定范围的,所以 ...

  4. codeforces 568a//Primes or Palindromes?// Codeforces Round #315 (Div. 1)

    题意:求使pi(n)*q<=rub(n)*p成立的最大的n. 先收集所有的质数和回文数.质数好搜集.回文数奇回文就0-9的数字,然后在头尾添加一个数.在x前后加a,就是x*10+a+a*pow( ...

  5. codeforces 569C C. Primes or Palindromes?(素数筛+dp)

    题目链接: C. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes in ...

  6. Uva-oj Palindromes 暴力

     Palindromes Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Statu ...

  7. 【34.88%】【codeforces 569C】Primes or Palindromes?

    time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  8. Codeforces Round #315 (Div. 2)——C. Primes or Palindromes?

    这道题居然是一个大暴力... 题意: π(n):小于等于n的数中素数的个数 rub(n) :小于等于n的数中属于回文数的个数 然后给你两个数p,q,当中A=p/q. 然后要你找到对于给定的A.找到使得 ...

  9. C. Primes or Palindromes?

    prime numbers non greater than n is about . We can also found the amount of palindrome numbers with ...

随机推荐

  1. Python9-列表-day4

    列表list 列表是python中的基础数据类型之一,其他语言中也有类似于列表的数据类型,比如js中叫数组,他是以[]括起来,每个元素以逗号隔开,而且他里面可以存放各种数据类型比如: li = [‘a ...

  2. 循环链表的C风格实现(单向)

    头文件: #ifndef _CIRCLELIST_H_ #define _CIRCLELIST_H_ typedef void CircleList; // typedef struct _tag_C ...

  3. redis 内存管理与数据淘汰机制(转载)

    原文地址:http://www.jianshu.com/p/2f14bc570563?from=jiantop.com 最大内存设置 默认情况下,在32位OS中,Redis最大使用3GB的内存,在64 ...

  4. 00037_this关键字

    1.成员变量和局部变量同名问题 当在方法中出现了局部变量和成员变量同名的时候,可以在成员变量名前面加上this.来区别成员变量和局部变量. class Person { private int age ...

  5. opacity--css + javascript兼容性代码

    css设置opacity 之前看了别人写了一段关于opacity的css代码,没深入理解就copy过来自己用了一段时间,现在重新拿出来又深入研究了一下. .cla{ /* IE 8 */ -ms-fi ...

  6. Leetcode 410.分割数组的最大值

    分割数组的最大值 给定一个非负整数数组和一个整数 m,你需要将这个数组分成 m 个非空的连续子数组.设计一个算法使得这 m 个子数组各自和的最大值最小. 注意:数组长度 n 满足以下条件: 1 ≤ n ...

  7. POJ-2187 Beauty Contest,旋转卡壳求解平面最远点对!

     凸包(旋转卡壳) 大概理解了凸包A了两道模板题之后在去吃饭的路上想了想什么叫旋转卡壳呢?回来无聊就搜了一下,结果发现其范围真广. 凸包: 凸包就是给定平面图上的一些点集(二维图包),然后求点集组成的 ...

  8. HDU 1693 Eat the Trees ——插头DP

    [题目分析] 吃树. 直接插头DP,算是一道真正的入门题目. 0/1表示有没有插头 [代码] #include <cstdio> #include <cstring> #inc ...

  9. Chrome中输入框默认样式移除

    Chrome中输入框默认样式移除 在chrome浏览器中会默认给页面上的输入框如input.textarea等渲染浏览器自带的边框效果 IE8中效果如下: Chrome中效果如下:   这在我们未给输 ...

  10. hdu 1827 有向图缩点看度数

    题意:给一个有向图,选最少的点(同时最小价值),从这些点出发可以遍历所有. 思路:先有向图缩点,成有向树,找入度为0的点即可. 下面给出有向图缩点方法: 用一个数组SCC记录即可,重新编号,1.... ...