A. Primes or Palindromes?
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Rikhail Mubinchik believes that the current definition of prime numbers is obsolete as they are too complex and unpredictable. A palindromic number is another matter. It is aesthetically pleasing, and it has a number of remarkable properties. Help Rikhail to
convince the scientific community in this!

Let us remind you that a number is called prime if it is integer larger than one, and is not divisible by any positive integer other than itself and one.

Rikhail calls a number a palindromic if it is integer, positive, and its decimal representation without leading zeros is a palindrome, i.e. reads the same from left to right and right to left.

One problem with prime numbers is that there are too many of them. Let's introduce the following notation: π(n) — the number of primes
no larger than nrub(n) —
the number of palindromic numbers no larger than n. Rikhail wants to prove that there are a lot more primes than palindromic ones.

He asked you to solve the following problem: for a given value of the coefficient A find the maximum n,
such that π(n) ≤ A·rub(n).

Input

The input consists of two positive integers pq,
the numerator and denominator of the fraction that is the value of A ().

Output

If such maximum number exists, then print it. Otherwise, print "Palindromic tree is better than splay tree" (without the quotes).

Sample test(s)
input
1 1
output
40
input
1 42
output
1
input
6 4
output
172

能够发现不可能无解,极限情况n不大

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+llabs(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
bool is_prime(int x)
{
if (x==1) return 0;
Fork(i,2,sqrt(x))
{
if (x%i==0) return 0;
}
return 1;
}
const int MAXN =10000000;
int P[MAXN],siz=0,b[MAXN]={0};
void make_prime(int n)
{
Fork(i,2,n)
{
if (!b[i])
{
P[++siz]=i;
}
For(j,siz)
{
if (P[j]*i>n) break;
b[P[j]*i]=1;
if (i%P[j]==0) break;
}
}
}
bool is_pal(int x)
{
char s[10];
sprintf(s,"%d",x);
int p=0,q=strlen(s)-1;
while(p<q) if (s[p]!=s[q]) return 0;else ++p,--q;
return 1;
} bool B[MAXN]={0};
bool make_pal(int n)
{
char s[20];
For(i,10000)
{ sprintf(s,"%d",i);
int m=strlen(s);
int p=m-1;
for(int j=m;p>-1;j++,p--) s[j]=s[p]; int x;
sscanf(s,"%d",&x);
if (x<=n) B[x]=1; for(int j=m;j<=2*m-1;j++) s[j]=s[j+1];
sscanf(s,"%d",&x);
if (x<=n) B[x]=1; }
} int main()
{
// freopen("A.in","r",stdin);
// freopen(".out","w",stdout);
int p,q;
cin>>p>>q;
make_prime(MAXN-1);
make_pal(MAXN-1);
int x1=0,x2=0,n=MAXN-1,ans=1,t=1;
For(i,n)
{
if (i==P[t]) x1++,t++;
if (B[i]) x2++;
if ((ll)(x1)*q<=(ll)(x2)*p) ans=i;
}
cout<<ans<<endl;
return 0;
}

CF 568A(Primes or Palindromes?-暴力推断)的更多相关文章

  1. Codeforces Round #315 (Div. 1) A. Primes or Palindromes? 暴力

    A. Primes or Palindromes?Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3261 ...

  2. Codeforces Round #315 (Div. 2) C. Primes or Palindromes? 暴力

    C. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes input st ...

  3. Codeforces Round #315 (Div. 2C) 568A Primes or Palindromes? 素数打表+暴力

    题目:Click here 题意:π(n)表示不大于n的素数个数,rub(n)表示不大于n的回文数个数,求最大n,满足π(n) ≤ A·rub(n).A=p/q; 分析:由于这个题A是给定范围的,所以 ...

  4. codeforces 568a//Primes or Palindromes?// Codeforces Round #315 (Div. 1)

    题意:求使pi(n)*q<=rub(n)*p成立的最大的n. 先收集所有的质数和回文数.质数好搜集.回文数奇回文就0-9的数字,然后在头尾添加一个数.在x前后加a,就是x*10+a+a*pow( ...

  5. codeforces 569C C. Primes or Palindromes?(素数筛+dp)

    题目链接: C. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes in ...

  6. Uva-oj Palindromes 暴力

     Palindromes Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Statu ...

  7. 【34.88%】【codeforces 569C】Primes or Palindromes?

    time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  8. Codeforces Round #315 (Div. 2)——C. Primes or Palindromes?

    这道题居然是一个大暴力... 题意: π(n):小于等于n的数中素数的个数 rub(n) :小于等于n的数中属于回文数的个数 然后给你两个数p,q,当中A=p/q. 然后要你找到对于给定的A.找到使得 ...

  9. C. Primes or Palindromes?

    prime numbers non greater than n is about . We can also found the amount of palindrome numbers with ...

随机推荐

  1. leetcode刷题——动态规划

    知识点 专题-B-动态规划 题目 斐波那契数列 矩阵路径 数组区间 分割整数 最长递增子序列 最大连续子序列和 最长公共子序列 最长回文子序列 最长公共子串 最长回文子串 背包 题解 CS-Notes ...

  2. Knockout v3.4.0 中文版教程-9-计算监控-API参考

    5.参考 下面的内容描述了如何构建和使用计算监控. 1. 构建一个计算监控 可以用如下的形式构建一个计算监控: ko.computed( evaluator [, targetObject, opti ...

  3. python基础-面向对象(装饰器)

    属性:   @property   @method_name.setter   @method_name.deleter   三个标签都是放在方法的上面来使用,且方法名要和后续使用的   变量名字相一 ...

  4. bootshiro---开源的后台管理框架--基于springboot2+ shiro+jwt的真正rest api资源无状态认证权限管理框架,开发人员无需关注权限问题,后端开发完api,前端页面配置即可

    https://gitee.com/tomsun28/bootshiro

  5. Leetcode 373.查找和最小的k对数字

    查找和最小的k对数字 给定两个以升序排列的整形数组 nums1 和 nums2, 以及一个整数 k. 定义一对值 (u,v),其中第一个元素来自 nums1,第二个元素来自 nums2. 找到和最小的 ...

  6. spring配置mybatis3

    mybatis官方网站:http://www.mybatis.org/mybatis-3/zh/configuration.html <!--第一步:加载配置数据库相关参数--> < ...

  7. 【bzoj4605】崂山白花蛇草水 权值线段树套KD-tree

    题目描述 神犇Aleph在SDOI Round2前立了一个flag:如果进了省队,就现场直播喝崂山白花蛇草水.凭借着神犇Aleph的实力,他轻松地进了山东省省队,现在便是他履行诺言的时候了.蒟蒻Bob ...

  8. 洛谷3830 [SHOI2012]随机树 【概率dp】

    题目 输入格式 输入仅有一行,包含两个正整数 q, n,分别表示问题编号以及叶结点的个数. 输出格式 输出仅有一行,包含一个实数 d,四舍五入精确到小数点后 6 位.如果 q = 1,则 d 表示叶结 ...

  9. charts 画饼图

    统计某一天某类物体的百分比 新知识点:aggregate https://blog.csdn.net/congcong68/article/details/51619882 主要的 $group $m ...

  10. code forces 1051 d

    看的这个题解:http://www.cnblogs.com/tobyw/p/9685639.html 写的比较清楚. 矩阵类型的计数题 比赛时感觉就像是个dp,然后就跳过了. 现在看着题解写一下,感觉 ...