【bzoj3505】[Cqoi2014]数三角形
【bzoj3505】[Cqoi2014]数三角形
Description
给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个。下图为4×4的网格上的一个三角形。
注意三角形的三点不能共线。
Input
输入一行,包含两个空格分隔的正整数m和n。
Output
Sample Input
Sample Output
数据范围
1<=m,n<=1000
题解
就是全部去减,减去在一列的,在一行的,在斜对角的,就好了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std; int n,m;
ll c[][];
ll ans,tmp; int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}
void get_C()
{
c[][]=;
for(int i=;i<=n*m;i++)
{
c[i][]=;
for(int j=;j<=;j++)
c[i][j]=c[i-][j-]+c[i-][j];
}
}
void solve()
{
ans=c[n*m][]-n*c[m][]-m*c[n][];
for(int i=;i<n;i++)
for(int j=;j<m;j++)
{
tmp=gcd(i,j)+;
if(tmp>) ans-=(tmp-)**(n-i)*(m-j);
}
printf("%lld",ans);
}
int main()
{
scanf("%d%d",&n,&m);n++,m++;
get_C();
solve();
}
【bzoj3505】[Cqoi2014]数三角形的更多相关文章
- [bzoj3505][CQOI2014]数三角形_组合数学
数三角形 bzoj-3505 CQOI-2014 题目大意:给你一个n*m的网格图,问你从中选取三个点,能构成三角形的个数. 注释:$1\le n,m\le 1000$. 想法:本来是想着等中考完了之 ...
- BZOJ3505 [Cqoi2014]数三角形
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- BZOJ3505 CQOI2014数三角形(组合数学)
显然可以用总方案数减掉三点共线的情况.对于三点共线,一个暴力的做法是枚举起点终点,其间整点数量即为横纵坐标差的gcd-1.这样显然会T,注意到起点终点所形成的线段在哪个位置是没有区别的,于是枚举线段算 ...
- [bzoj3505 Cqoi2014] 数三角形 (容斥+数学)
传送门 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正 ...
- bzoj3505: [Cqoi2014]数三角形 [数论][gcd]
Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正整数m和 ...
- 【排列组合】bzoj3505 [Cqoi2014]数三角形
http://blog.csdn.net/zhb1997/article/details/38474795 #include<cstdio> #include<algorithm&g ...
- 2018.09.09 bzoj3505: [Cqoi2014]数三角形(容斥原理+简单计数)
传送门 正难则反. 可以直接把问题转化成求出三点共线的情况数量. 如果同在一排或一列显然可以直接算,关键是如何求出斜着的. 我们知道,对于一个整点矩形. 如果长为x,宽为y,那么这个矩形任意一条对角线 ...
- bzoj3505 [Cqoi2014]数三角形——组合数+容斥
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3505 好题啊好题...好像还曾经出现在什么智力测试卷中来着...当时不会现在还是无法自己推出 ...
- 【BZOJ3505】[Cqoi2014]数三角形 组合数
[BZOJ3505][Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. ...
随机推荐
- D. Winter Is Coming 贪心(好题)
http://codeforces.com/contest/747/problem/D 大概的思路就是找到所有两个负数夹着的线段,优先覆盖最小的长度.使得那时候不用换鞋,是最优的. 但是这里有个坑点, ...
- D. Green and Black Tea 贪心 + 构造
http://codeforces.com/contest/746/problem/D 首先说下一定是NO的情况. 假设a > b 那么,b最多能把a分成b + 1分,如果每份刚好是k的话,那么 ...
- php安装ionCube
- 工作记录 angular页面操作 MD5加密
今天只是做页面,基于angularjs,有美工做的图打底,确实好用 密码保存,用到了C# MD5加密: https://www.cnblogs.com/healer007/p/5062189.html
- php之依赖注入和控制反转
DI——Dependency Injection 依赖注入 IoC——Inversion of Control 控制反转 要想理解上面两个概念,就必须搞清楚如下的问题: 1.参与者都有谁 ...
- win7打开网络看不到局域网的其他电脑
双击打开桌面上的“网络”,在打开的窗口中看不到局域网的其他电脑/计算机.以前都可以看到的.可能是没有开启网络发现的原因,可是我并没有关闭网络发现.不知,怎么回事? Windows7查看网络邻居要开启g ...
- Java序列化技术性能分析(JDK原生与Protostuff)
熟悉Java的朋友应该知道Java有一个叫序列化的技术,即把一个Object转换为可保存,可传输的流数据.相应的,同时存在反序列化,即将流数据转换为Object类,而在转换的过程中,该Object保持 ...
- JavaScript——XMLHttpRequest 家族
https://www.zhangxinxu.com/wordpress/2013/10/understand-domstring-document-formdata-blob-file-arrayb ...
- 【译】x86程序员手册33-9.6中断任务和中断处理程序
9.6 Interrupt Tasks and Interrupt Procedures 中断任务和中断处理程序 Just as a CALL instruction can call either ...
- Swift 命名空间形式扩展的实现
Swift 的 extension 机制很强大,不仅可以针对自定义的类型,还能作用于系统库的类型,甚至基础类型比如 Int.当在对系统库做 extension 的时候,就会涉及到一个命名冲突的问题.O ...