题面

一看到求“最小值的最大值”这种问题,就能想到二分了。

二分答案,然后我们要把一圈分成三块,使这三块的大小都$\geq mid$。做法是把环展开成2倍长度的链,先钦定一个起点,然后根据前缀和再二分一下前两块的最小大小(注意前两块要连着),第三块用一圈的大小减去前两块的大小即可得到。如果第三块的大小$\geq mid$就返回$true$,提高答案范围;否则返回$false$,降低答案范围。

这样就能卡着最优情况下最小那一块的最大值从而得出答案了。

上面这种做法是$O(n*log_n*log_a)$,且二分次数多,常数较大,比较卡时。能不能不二分前两块的最小大小而快速求出?

如果做过“不超过某数的最大区间和(所有数非负)”这种单调性显然的题的话应该知道,钦定起点、确定大小这样一个做法在单调意义下可以滑动窗口。在这里前两块其实也是滑窗,因此省掉了内层的二分。时间复杂度$O(n*log_a)$。

当然,把枚举起点的循环放到二分外边会快一点。

也可以改变枚举量(WZQ的做法),就是把二分最小大小 改为 二分前两块的长度,提高答案范围当且仅当第一块的大小$\leq mid$,第二、三块的大小$\geq mid$。这样时间复杂度大概为$O(n*log_n*log_n)$。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 100002
inline int read(){
int x=; bool f=; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=;
for(; isdigit(c);c=getchar()) x=(x<<)+(x<<)+(c^'');
if(f) return x;
return -x;
}
int n,n1;
long long a[N<<],sfx[N<<];
long long judge(long long x){
//printf("x:%d\n",x);
int dir,dir2; long long mx=-;
for(int i=;sfx[i+n1-]-sfx[i-]>=x*;++i){
dir=lower_bound(sfx+i,sfx+i+n1,x+sfx[i-])-sfx;
if(sfx[dir]-sfx[i-]>x) --dir;
if(dir<i) continue;
dir2=lower_bound(sfx+dir+,sfx+i+n1,x+sfx[dir])-sfx;
if(dir2<=dir) dir2=dir+;
//printf("%d %d %lld %lld %lld\n",dir,dir2,sfx[dir]-sfx[i-1],sfx[dir2]-sfx[dir],sfx[i+n1-1]-sfx[dir2]);
//cout<<(dir2<i+n1-1)<<' '<<(sfx[i+n1-1]-sfx[dir2]>=sfx[dir]-sfx[i-1])<<'\n';
if(dir2<i+n1- && sfx[i+n1-]-sfx[dir2]>=sfx[dir]-sfx[i-]) mx=max(mx,sfx[dir]-sfx[i-]);
}
//printf("MX:%lld\n",mx);
return mx;
} int main(){
n=n1=read();
int i;
for(i=;i<=n;i++) a[i]=a[i+n]=read(), sfx[i]=sfx[i-]+a[i];
n<<=;
for(;i<=n;i++) sfx[i]=sfx[i-]+a[i];
long long l=,r=(sfx[n]+n-)/,mid,ret,ans=-;
while(l<=r){
mid=(l+r)>>;
ret=judge(mid);
if(ret!=-) ans=ret, l=mid+;
else r=mid-;
}
printf("%lld\n",ans);
return ;
}

最外层二分答案(较慢)

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 100002
inline int read(){
int x=; bool f=; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=;
for(; isdigit(c);c=getchar()) x=(x<<)+(x<<)+(c^'');
if(f) return x;
return -x;
}
int n,n1;
long long a[N<<],sfx[N<<]; long long judge(int i,long long x){
//printf("faq:%d %lld\n",i,x);
int dir,dir2;
dir=lower_bound(sfx+i,sfx+i+n1,x+sfx[i-])-sfx;
if(sfx[dir]-sfx[i-]>x) --dir;
if(dir<i || dir>=i+n1-) return -; dir2=lower_bound(sfx+dir+,sfx+i+n1,(sfx[dir]<<)-sfx[i-])-sfx;
if(dir2>=i+n1-) return -; //printf("%d %d %lld %lld %lld\n",dir,dir2,sfx[dir]-sfx[i-1],sfx[dir2]-sfx[dir],sfx[i+n1-1]-sfx[dir2]);
if(sfx[i+n1-]-sfx[dir2]>=sfx[dir]-sfx[i-]) return sfx[dir]-sfx[i-];
return -;
}
int main(){
n=n1=read();
int i;
for(i=;i<=n;i++) a[i]=a[i+n]=read(), sfx[i]=sfx[i-]+a[i];
n<<=;
for(;i<=n;i++) sfx[i]=sfx[i-]+a[i];
int dir,dir2;
long long ans=-;
for(int i=; i<=n1; i++){
long long l=,r=sfx[n1]/,mid,ret,res=-;
while(l<=r){
mid=(l+r)>>;
ret=judge(i,mid);
if(ret!=-) res=ret, l=mid+;
else r=mid-;
}
ans=max(ans,res);
}
printf("%lld\n",ans);
return ;
}

最外层枚举起点(快一点)

 #include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define ll long long
using namespace std;
const int maxn=+;
inline int read(){
int x=,f=;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=(x<<)+(x<<)+ch-'';
return x*f;
}
ll n,a[maxn],sum,num[maxn]; bool erfe(ll l,ll r,ll he){
ll l1=l,r1=r,ans=;
while(r1>=l1){
ll mid=r1+l1>>;
ll qq=num[mid]-num[l-],ww=num[n]-qq-he;
if(qq>=he){
if(ww>=he)return ;
else r1=mid-;
}
else l1=mid+;
}
return ;
}
ll aa;
ll erf(ll l,ll r){
ll l1=l,r1=r,ans=;
while(r1>=l1){
ll mid=r1+l1>>;
if(num[mid]-num[l-]<=sum){
if(erfe(mid+,r,num[mid]-num[l-]))ans=max(ans,num[mid]-num[l-]),l1=mid+;
else r1=mid-;
}
else r1=mid-;
}
return ans;
} ll ans=;
void zj(){
for(ll i=;i<=n;i++){
ans=max(ans,erf(i,n+i-));
}
printf("%lld",ans);
return ;
} int main(){
n=read();
for(ll i=;i<=n;i++){
a[i]=read();
num[i]=num[i-]+a[i];
sum+=a[i];
}
for(ll i=n+;i<=*n;i++)a[i]=a[i-n],num[i]=num[i-]+a[i];
sum=sum/;
zj();
return ;
}

WZQ的做法

滑窗没写先凑乎吧。

【2018.10.1】「JOI 2014 Final」年轮蛋糕的更多相关文章

  1. 【题解】LOJ2759. 「JOI 2014 Final」飞天鼠(最短路)

    [题解]LOJ2759. 「JOI 2014 Final」飞天鼠(最短路) 考虑最终答案的构成,一定是由很多飞行+一些上升+一些下降构成. 由于在任何一个点上升或者下降代价是一样的,所以: 对于上升操 ...

  2. 「JOI 2014 Final」飞天鼠

    「JOI 2014 Final」飞天鼠 显然向上爬是没有必要的,除非会下降到地面以下,才提高到刚好为0. 到达一个点有两种情况:到达高度为0和不为0. 对于高度不为0的情况,显然花费的时间越少高度越高 ...

  3. loj 2759「JOI 2014 Final」飞天鼠

    loj 这题有在一棵树上上升或者下降的操作,稍加分析后可以发现上升操作如果不是一定要做(指高度不足以到下一棵树或者是最后到达\(n\))就不做,下降操作也是如果不是一定要做(指到达下一棵树时高度过高) ...

  4. 「JOI 2014 Final」裁剪线

    做法一 首先将边界也视作四条裁剪线,整个平面作为一张纸,视存在 \(y = -\infty, y = +\infty, x = -\infty, x = +\infty\) 四条直线. 按照纵坐标依次 ...

  5. 「JOI 2017 Final」JOIOI 王国

    「JOI 2017 Final」JOIOI 王国 题目描述 题目译自 JOI 2017 Final T3「 JOIOI 王国 / The Kingdom of JOIOI」 JOIOI 王国是一个 H ...

  6. 【LOJ】#3014. 「JOI 2019 Final」独特的城市(长链剖分)

    LOJ#3014. 「JOI 2019 Final」独特的城市(长链剖分) 显然我们画一条直径,容易发现被统计的只可能是直径某个距离较远的端点到这个点的路径上的值 用一个栈统计可以被统计的点,然后我们 ...

  7. 「JOI 2015 Final」分蛋糕 2

    「JOI 2015 Final」分蛋糕 2 题解 这道题让我想起了新年趣事之红包这道DP题,这道题和那道题推出来之后的做法是一样的. 我们可以定义dp[i][len][1] 表示从第i块逆时针数len ...

  8. 「JOI 2015 Final」城墙

    「JOI 2015 Final」城墙 复杂度默认\(m=n\) 暴力 对于点\((i,j)\),记录\(ld[i][j]=min(向下延伸的长度,向右延伸的长度)\),\(rd[i][j]=min(向 ...

  9. 「JOI 2015 Final」舞会

    「JOI 2015 Final」舞会 略微思考一下即可知该过程可以化为一棵树.(3个贵族中选择1个,即新建一个节点连向这3个贵族). 该树的结点个数为\(2n\). 考虑二分答案mid. 判定的是公主 ...

随机推荐

  1. 大数据freestyle: 共享单车轨迹数据助力城市合理规划自行车道

    编者按:近年来,异军突起的共享单车极大地解决了人们共同面临的“最后一公里”难题,然而,共享单车发展迅猛,自行车道建设却始终没有能够跟上脚步.幸运的是摩拜单车大量的轨迹数据为我们提供了一种新的思路:利用 ...

  2. Win10系统64位快速专业安装版 V2016年

    win10系统64位快速专业安装版 V2016年2月 系统下载:http://www.xitongma.com/ Ghost Win10 64位正式装机专业版2016 微软向Windows用户推送了w ...

  3. Sublime Text3括号配对与代码包围效果BracketHighlighter

    就这么看json等配置文件,太难了,我们需要括号匹配插件BracketHighlighter,但是装完以后只有下划线提示不明显,需要配置     Bracket Settings-Default 文件 ...

  4. HtmlUnit爬取Ajax动态生成的网页以及自动调用页面javascript函数

    HtmlUnit官网的介绍: HtmlUnit是一款基于Java的没有图形界面的浏览器程序.它模仿HTML document并且提供API让开发人员像是在一个正常的浏览器上操作一样,获取网页内容,填充 ...

  5. iOS面试题 第一天

    今天上午,下午分别面试了两家公司.上午是一家互联网公司,气氛还比较好,是我比较喜欢的.技术这块是直接机试,主要是给了些BUG让我修复,整个过程还算顺利.下午去了一家大型的证券公司.整理技术问题如下: ...

  6. 获取url请求的参数值

    function getURLParameter(name) { return decodeURIComponent((new RegExp('[?|&]' + name + '=' + '( ...

  7. react native 在window 7上配置开发环境-Andorid

    参照官方配置:https://facebook.github.io/react-native/docs/getting-started.html 因为在配置的过程中遇到很多问题,在此记录一下. 1.j ...

  8. iOS开发遇到的坑之四--图片命名不规范

    最近上手并主导一个小项目的研发,在开发地图模块的时候,UI切图给我们使用,他给的图片命名是1.1.1.png 1.1.2.png 1.1.3.png 我也没有多看,就直接打包发给小组成员叫他添加到Im ...

  9. odoo10 fields.Selection 根据权限显示不同的selection内容

    摘要:一般作为下拉选项,selection的选项内容是固定,针对一些特殊要求,根据权限组显示不同的selection内容的,可以参考odoo源码的. 前提:基于 odoo10.0 的源码 参考源码1: ...

  10. 830. Positions of Large Groups@python

    In a string S of lowercase letters, these letters form consecutive groups of the same character. For ...