bzoj3550
费用流+线性规划
搞了很长时间。。。
我们可以设立式子,a[1]+a[2]+a[3]+...+a[n]<=k , ... , a[2 * n + 1]+ ... +a[3*n]<=k
a是指该位有没有选
那么我们添加一个辅助变量f
a[1]+a[2]+a[3]+...+a[n]+f[1]=k,
...
a[2*n+1]+...+a[3*n]+f[2*n+1]=k
我们就得到了2n+1个式子
然后我们添加两个式子a(0):0=0 a(2*n+2):0=0
然后差分得到2n+2个式子,后一个式子减前一个式子
0:a[1]+a[2]+...+a[n]+f[1]=k
1:a[2]+...+a[n+1]+f[2]-a[1]-...-a[n]-f[1]=0->a[n+1]+f[2]-a[1]-f[1]=0
2:a[n+2]+f[3]-a[2]-f[2]=0
...
2n+1:a[3*n]+f[2*n+1]-a[2*n]-f[2*n]
2n+2:a[2n+1]+...+a[3*n]+f[2*n+1]=k
然后这个式子很像网络流的流量平衡,于是这样建图,正对负,负对正,因为第0项是a[1]+...+a[n],所以0->[1,n],因为都是这样形式的a[n+1]+f[2]-a[1]-f[1],-a[1]和+a[1]对应,因为a∈[0,1],所以流量为1,a[i]=1是指选了a[i],所以费用为a[i]
i-1->i,因为相邻两项-f[i],+f[i],f[i]∈[0,k],因为是辅助变量,所以什么都没有对应,流量为k,费用为0
后面类似 然后就建好图了 设立源汇和1n相连,流量为k 感觉理解不够深刻 碰见这种序列+限制的题可以用费用流做,先把限制代数化,然后-+连边,一般还会相邻的点之间连边,这样可以解决一些序列的问题,以后碰见再做
#include<bits/stdc++.h>
using namespace std;
const int N = , inf = 0x3f3f3f3f;
struct edge {
int nxt, to, f, c;
} e[N * ];
int n, m, k, source, sink, tot, cnt = , sum;
int a[N], head[N], d[N], pree[N], prev[N], vis[N], live[N], dead[N], day[N], c[N], l[N], p[N];
inline void link(int u, int v, int f, int c)
{
e[++cnt].nxt = head[u];
head[u] = cnt;
e[cnt].f = f;
e[cnt].to = v;
e[cnt].c = c;
}
inline void insert(int u, int v, int f, int c)
{
link(u, v, f, c);
link(v, u, , -c);
}
bool spfa()
{
memset(d, -, sizeof(d));
d[source] = ;
queue<int> q;
q.push(source);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = ;
for(int i = head[u]; i; i = e[i].nxt) if(e[i].f && (d[e[i].to] < d[u] + e[i].c || d[e[i].to] == -))
{
pree[e[i].to] = i;
prev[e[i].to] = u;
d[e[i].to] = d[u] + e[i].c;
if(vis[e[i].to] == )
{
q.push(e[i].to);
vis[e[i].to] = ;
}
}
}
return d[sink] != -;
}
inline int Edmonds_Karp()
{
int ans = ;
while(spfa())
{
int now = sink, delta = inf;
while(now != source)
{
delta = min(delta, e[pree[now]].f);
now = prev[now];
}
now = sink;
while(now != source)
{
e[pree[now]].f -= delta;
e[pree[now] ^ ].f += delta;
now = prev[now];
}
ans += delta * d[sink];
}
return ans;
}
int main()
{
scanf("%d%d", &n, &k);
for(int i = ; i <= * n; ++i) scanf("%d", &a[i]);
source = * n + ;
sink = * n + ;
int s = , t = * n + ;
insert(source, s, k, );
insert(t, sink, k, );
sink = * n + ;
for(int i = ; i <= n; ++i) insert(s, i, , a[i]);
for(int i = ; i <= * n + ; ++i) insert(i - , i, k, );
for(int i = n + ; i <= * n; ++i) insert(i, t, , a[i + n]);
for(int i = n + ; i <= * n; ++i) insert(i - n, i, , a[i]); /* for(int i = 1; i <= 2 * n + 1; ++i) insert(i - 1, i, k, 0);
for(int i = 1; i <= n; ++i)
{
insert(s, i, 1, a[i]);
insert(i, i + n, 1, a[i + n]);
insert(i + n, t, 1, a[i + 2 * n]);
} */
printf("%d\n", Edmonds_Karp());
return ;
}
bzoj3550的更多相关文章
- BZOJ3550 [ONTAK2010]Vacation 【单纯形】
题目链接 BZOJ3550 题解 单纯形裸题 题意不清,每个位置最多选一次 #include<algorithm> #include<iostream> #include< ...
- BZOJ3550: [ONTAK2010]Vacation
3550: [ONTAK2010]Vacation Time Limit: 10 Sec Memory Limit: 96 MBSubmit: 91 Solved: 71[Submit][Stat ...
- bzoj3550: [ONTAK2010]Vacation(单纯形法+线性规划)
传送门 直接暴力把线性规划矩阵给打出来然后单纯形求解就行了 简单来说就是每个数记一个\(d_i\)表示选或不选,那么就是最大化\(\sum d_ic_i\),并满足一堆限制条件 然后不要忘记限制每个数 ...
- bzoj3550: [ONTAK2010]Vacation&&bzoj3112: [Zjoi2013]防守战线
学了下单纯形法解线性规划 看起来好像并不是特别难,第二个code有注释.我还有...*=-....这个不是特别懂 第一个是正常的,第二个是解对偶问题的 #include<cstdio> # ...
- [BZOJ3550] [Sdoi2014]数数
Description 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串.例如当S=(22,333,0233)时,233是幸运数,2333.20233.3 ...
- 【Richard 的刷(水)题记录】
大概想了想,还是有个记录比较好. 9/24 网络流一日游: 最大流:bzoj1711[Usaco2007 Open]Dining 拆点 BZOJ 3993 Sdoi2015 星际战争 二分 P.S.这 ...
随机推荐
- ThinkPHP---thinkphp模型(M)
(1)配置数据库连接 数据库的连接配置可以在系统配置文件ThinkPHP/Conf/convention.php中找到 /* 数据库设置 */ 'DB_TYPE' => '', // 数据库类型 ...
- 3D赛瓦号——整装待发!
随着岁末将至,twaver开发团队依旧马不停蹄,3d产品功能持续更新,新特效和功能目不暇接.现在,我们就利用一些新功能,制作一个全新“赛瓦号”飞船,大家看一下仿真程度是否有质的不同? 网页3d技术正在 ...
- 我的ACM技能框架(自用)
每次接触到新的知识就把它名字记下来,留给以后当纪念 2018.11 已经学会的 滚动数组,前缀和优化 对多维数组在空间复杂度上的降维优化 最长上升子序列 LIS问题,动态规划递推解决 最长不下 ...
- Luogu P1692 部落卫队
解题思路 数据范围不是很大,那应该不是那些普遍的图论的算法.考虑搜索,用暴力解决.从1到N枚举每一个点的位置,搜索这个点事选还是不选.如果在这个点之前选到的点中又和他冲突的点,那就不选,要么就选. 附 ...
- [Luogu] P1407 [国家集训队]稳定婚姻
题目描述 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的姗姗和男友谈恋爱半年就结婚,结婚不到 ...
- vue中axios设置
//设置默认全局baseURL axios.defaults.baseURL=process.env.BASE_API; //设置默认全局携带浏览器cookie axios.defaults.with ...
- 【模板】51nod 1051 最大子矩阵和
[题解] 二重循环枚举起始列和终止列,竖着往下加,转化为一个最大子段和问题,逐行累加即可. #include<cstdio> #include<cstring> #includ ...
- Stones HDU 1896
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1896 题目大意: 有n个石头,每个石头有:p 它所在的位置 ,d 它能扔多远 从0 开始,遇到第奇 ...
- Introduction to TensorFlow
Lecture note 1: Introduction to TensorFlow Why TensorFlow TensorFlow was originally created by resea ...
- [luoguP2701] [USACO5.3]巨大的牛棚Big Barn(DP)
传送门 经典问题. 找出最大的不包含 1 的正方形. f[i][j] 表示 以 (i,j) 结尾的最大的不包含 1 的正方形 f[i][j] = min(f[i - 1][j], f[i][j - 1 ...