HDU2262;Where is the canteen(高斯消元+期望)
传送门
题意
给出一张图,LL从一个点等概率走到上下左右位置,询问LL从宿舍走到餐厅的步数期望
分析
该题是一道高斯消元+期望的题目
难点在于构造矩阵,我们发现以下结论
设某点走到餐厅的期望为Ek
1.当该点为餐厅,Ek=0
2.\(Ek=\sum_{i=1}^{cnt}Enexti-1\)
我们先BFS将可达点标号,再构建矩阵,再高斯消元,最后A[vis[sx][sy]][id]为所求解
trick
代码
#include<bits/stdc++.h>
using namespace std;
const int M = 202;
const double eps = 1e-8;
int equ, var;
double a[M][M], x[M];
void Gauss ()
{
int i, j, k, col, max_r;
for (k = 0, col = 0; k < equ && col < var; k++, col++)
{
max_r = k;
for (i = k+1; i < equ; i++)if (fabs (a[i][col]) > fabs (a[max_r][col])) max_r = i;
if (k != max_r)
{
for (j = col; j < var; j++)swap (a[k][j], a[max_r][j]);
swap (x[k], x[max_r]);
}
for (j = col+1; j < var; j++) a[k][j] /= a[k][col]; x[k] /= a[k][col];
a[k][col] = 1;
for (i = 0; i < equ; i++) if (i != k)
{
x[i] -= x[k] * a[i][k];
for (j = col+1; j < var; j++) a[i][j] -= a[k][j] * a[i][col];
a[i][col] = 0;
}
}
}
//has[x]表示人在x点时的变量号,因为我们只用可达状态建立方程,所以需要编号
int has[M], vis[M], id, e, n, m;
double p[M], sum;
int bfs (int u)
{
memset (has, -1, sizeof(has));
memset (a, 0, sizeof(a)); //忘记初始化WA勒,以后得注意
memset (vis, 0, sizeof(vis));
int v, i, flag = 0;id=0;
queue<int> q;
q.push (u);
has[u] = id++;
while (!q.empty ())
{
u = q.front ();q.pop ();
if (vis[u]) continue;
vis[u] = 1;
if (u == e || u == n-e) //终点有两个,你懂的~
{
a[has[u]][has[u]] = 1;
x[has[u]] = 0;
flag = 1;
continue;
}
//E[x] = sum ((E[x+i]+i) * p[i])
// ----> E[x] - sum(p[i]*E[x+i]) = sum(i*p[i])
a[has[u]][has[u]] = 1;x[has[u]] = sum;
for (i = 1; i <= m; i++)if(fabs(p[i])>eps)
{
//非常重要!概率为0,该状态可能无法到达,如果还去访问并建立方程会导致无解
v = (u + i) % n;
if (has[v] == -1) has[v] = id++;
a[has[u]][has[v]] -= p[i];
q.push (v);
}
}
return flag;
}
int main()
{
int t, s, d, i;
for(scanf("%d",&t);t--;)
{
scanf ("%d%d%d%d%d", &n, &m, &e, &s, &d);
n = 2*(n-1);sum = 0;
for (i = 1; i <= m; i++)
{
scanf ("%lf", p+i);
p[i] = p[i] / 100;
sum += p[i] * i;
}
if (s == e){puts ("0.00");continue;}
//一开始向左,起点要变
if (d > 0) s = (n - s) % n;
if (!bfs (s)){puts ("Impossible !");continue;}
equ = var = id;
Gauss ();
printf ("%.2f\n", x[has[s]]);
}
return 0;
}
HDU2262;Where is the canteen(高斯消元+期望)的更多相关文章
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- BZOJ_3270_博物馆_(高斯消元+期望动态规划+矩阵)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=3270 \(n\)个房间,刚开始两个人分别在\(a,b\),每分钟在第\(i\)个房间有\(p[ ...
- BZOJ 2337 XOR和路径 | 高斯消元 期望 位运算
BZOJ 2337 XOR和路径 题解 这道题和游走那道题很像,但又不是完全相同. 因为异或,所以我们考虑拆位,分别考虑每一位: 设x[u]是从点u出发.到达点n时这一位异或和是1的概率. 对于所有这 ...
- BZOJ 2707: [SDOI2012]走迷宫 拓扑+高斯消元+期望概率dp+Tarjan
先Tarjan缩点 强连通分量里用高斯消元外面直接转移 注意删掉终点出边和拓扑 #include<cstdio> #include<cstring> #include<a ...
- 【BZOJ2707】[SDOI2012]走迷宫 Tarjan+拓扑排序+高斯消元+期望
[BZOJ2707][SDOI2012]走迷宫 Description Morenan被困在了一个迷宫里.迷宫可以视为N个点M条边的有向图,其中Morenan处于起点S,迷宫的终点设为T.可惜的是,M ...
- 洛谷P3232 [HNOI2013]游走(高斯消元+期望)
传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次 ...
- HDU4418:Time travel(高斯消元+期望)
传送门 题意 一个人在数轴上来回走,以pi的概率走i步i∈[1, m],给定n(数轴长度),m,e(终点),s(起点),d(方向),求从s走到e经过的点数期望 分析 设E[x]是人从x走到e经过点数的 ...
- [luogu3232 HNOI2013] 游走 (高斯消元 期望)
传送门 题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等 ...
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元+期望dp)
传送门 解题思路 设\(f(x)\)表示到\(x\)这个点的期望次数,那么转移方程为\(f(x)=\sum\frac{f(u)*(1 - \frac{p}{q})}{deg(u)}\),其中\(u\) ...
随机推荐
- php 之 日志系统seaslog安装
php 之 日志系统seaslog 特点: 1.高性能(使用C语言编写的). 2.无需配置. 3.功能完善.使用简单. 安装: 打开php的扩展官网:https://pecl.php.net/. 然后 ...
- 《APP开发》APP规范实例-详细的UI设计方法
对了一个APP开发初手来说,可能心里有很多的疑惑: 屏幕设计为多宽,宽度是不是应该设置为百分比; 按钮大小多大,怎么排列,文字字体用多大的?什么字体显示好看?图标多大,怎么用色?界面怎么布局?等等很多 ...
- Scrambled Polygon--poj2007(极角排序模板)
http://poj.org/problem?id=2007 #include<stdio.h> #include<math.h> #include<algorithm& ...
- 寒武纪camp Day3
补题进度:9/10 A(多项式) 题意: 在一个长度为n=262144的环上,一个人站在0点上,每一秒钟有$\frac{1}{2}$的概率待在原地不动,有$\frac{1}{4}$的概率向前走一步,有 ...
- 学习日常笔记<day15>mysql基础
1.数据库入门 1.1数据库软件 数据库:俗称数据的仓库,方便管理数据的软件(或程序) 1.2市面上数据库软件 Oracle,甲骨文公司的产品. 当前最流行应用最广泛的数据库软件.和java语言兼容非 ...
- Java日志框架-logback配置文件多环境日志配置(开发、测试、生产)(原始解决方法)
说明:这种方式应该算是最通用的,原理是通过判断标签实现. <!-- if-then form --> <if condition="some conditional exp ...
- json解析bug之ERROR ExceptionController:185 - not close json text, token : :
错误:ERROR ExceptionController:185 - not close json text, token : : 原因:json数据格式有误.!我的错误是,缺少了一个包括json数据 ...
- 【python】Python的字典get方法:从字典中获取一个值
转自: http://blog.sina.com.cn/s/blog_6be89284010183xm.html
- 如何在 Linux 环境下配置 Nagios Remote Plugin Executor (NRPE)
为 NRPE 配置自定义命令 远程服务器上安装 下面列出了一些可以用于 NRPE 的自定义命令.这些命令在远程服务器的 /etc/nagios/nrpe.cfg 文件中定义. ## 当 1.5.15 ...
- ln 软连接 & 硬连接
创建软连接的方式 #ln -s soure /file object 创建软连接是连接文件本身,可以跨分区建立软连接,不会应为不同分区而出现不能使用的问题. 在创建软连接的文件中,修改一处文件另一处同 ...