不能错过的分布式ID生成器(Leaf ),好用的一批!
本文收录在个人博客:www.chengxy-nds.top,技术资料共享,同进步
不了解分布式ID的同学,先行去看《一口气说出 9种 分布式ID生成方式,面试官有点懵了》温习一下基础知识,这里就不再赘述了
美团(Leaf)
Leaf是美团推出的一个分布式ID生成服务,名字取自德国哲学家、数学家莱布尼茨的一句话:“There are no two identical leaves in the world.”(“世界上没有两片相同的树叶”),取个名字都这么有寓意,美团程序员牛掰啊!
Leaf的优势:高可靠、低延迟、全局唯一等特点。
目前主流的分布式ID生成方式,大致都是基于数据库号段模式和雪花算法(snowflake),而美团(Leaf)刚好同时兼具了这两种方式,可以根据不同业务场景灵活切换。
接下来结合实战,详细的介绍一下Leaf的Leaf-segment号段模式和Leaf-snowflake模式
一、 Leaf-segment号段模式
Leaf-segment号段模式是对直接用数据库自增ID充当分布式ID的一种优化,减少对数据库的频率操作。相当于从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,业务服务将号段在本地生成1~1000的自增ID并加载到内存.。
大致的流程入下图所示:

号段耗尽之后再去数据库获取新的号段,可以大大的减轻数据库的压力。对max_id字段做一次update操作,update max_id= max_id + step,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]。
由于依赖数据库,我们先设计一下表结构:
CREATE TABLE `leaf_alloc` (
`biz_tag` varchar(128) NOT NULL DEFAULT '' COMMENT '业务key',
`max_id` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前已经分配了的最大id',
`step` int(11) NOT NULL COMMENT '初始步长,也是动态调整的最小步长',
`description` varchar(256) DEFAULT NULL COMMENT '业务key的描述',
`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '数据库维护的更新时间',
PRIMARY KEY (`biz_tag`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
预先插入一条测试的业务数据
INSERT INTO `leaf_alloc` (`biz_tag`, `max_id`, `step`, `description`, `update_time`) VALUES ('leaf-segment-test', '0', '10', '测试', '2020-02-28 10:41:03');
biz_tag:针对不同业务需求,用biz_tag字段来隔离,如果以后需要扩容时,只需对biz_tag分库分表即可max_id:当前业务号段的最大值,用于计算下一个号段step:步长,也就是每次获取ID的数量description:对于业务的描述,没啥好说的
将Leaf项目下载到本地:https://github.com/Meituan-Dianping/Leaf
修改一下项目中的leaf.properties文件,添加数据库配置
leaf.name=com.sankuai.leaf.opensource.test
leaf.segment.enable=true
leaf.jdbc.url=jdbc:mysql://127.0.0.1:3306/xin-master?useUnicode=true&characterEncoding=utf8
leaf.jdbc.username=junkang
leaf.jdbc.password=junkang
leaf.snowflake.enable=false
注意:leaf.snowflake.enable 与 leaf.segment.enable 是无法同时开启的,否则项目将无法启动。
配置相当的简单,直接启动LeafServerApplication后就OK了,接下来测试一下,leaf是基于Http请求的发号服务, LeafController 中只有两个方法,一个号段接口,一个snowflake接口,key就是数据库中预先插入的业务biz_tag。
@RestController
public class LeafController {
private Logger logger = LoggerFactory.getLogger(LeafController.class);
@Autowired
private SegmentService segmentService;
@Autowired
private SnowflakeService snowflakeService;
/**
* 号段模式
* @param key
* @return
*/
@RequestMapping(value = "/api/segment/get/{key}")
public String getSegmentId(@PathVariable("key") String key) {
return get(key, segmentService.getId(key));
}
/**
* 雪花算法模式
* @param key
* @return
*/
@RequestMapping(value = "/api/snowflake/get/{key}")
public String getSnowflakeId(@PathVariable("key") String key) {
return get(key, snowflakeService.getId(key));
}
private String get(@PathVariable("key") String key, Result id) {
Result result;
if (key == null || key.isEmpty()) {
throw new NoKeyException();
}
result = id;
if (result.getStatus().equals(Status.EXCEPTION)) {
throw new LeafServerException(result.toString());
}
return String.valueOf(result.getId());
}
}
访问:http://127.0.0.1:8080/api/segment/get/leaf-segment-test,结果正常返回,感觉没毛病,但当查了一下数据库表中数据时发现了一个问题。


通常在用号段模式的时候,取号段的时机是在前一个号段消耗完的时候进行的,可刚刚才取了一个ID,数据库中却已经更新了max_id,也就是说leaf已经多获取了一个号段,这是什么鬼操作?

Leaf为啥要这么设计呢?
Leaf 希望能在DB中取号段的过程中做到无阻塞!
当号段耗尽时再去DB中取下一个号段,如果此时网络发生抖动,或者DB发生慢查询,业务系统拿不到号段,就会导致整个系统的响应时间变慢,对流量巨大的业务,这是不可容忍的。
所以Leaf在当前号段消费到某个点时,就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段。这样做很大程度上的降低了系统的风险。
那么某个点到底是什么时候呢?
这里做了一个实验,号段设置长度为step=10,max_id=1,

当我拿第一个ID时,看到号段增加了,1/10


当我拿第三个Id时,看到号段又增加了,3/10


Leaf采用双buffer的方式,它的服务内部有两个号段缓存区segment。当前号段已消耗10%时,还没能拿到下一个号段,则会另启一个更新线程去更新下一个号段。
简而言之就是Leaf保证了总是会多缓存两个号段,即便哪一时刻数据库挂了,也会保证发号服务可以正常工作一段时间。

通常推荐号段(segment)长度设置为服务高峰期发号QPS的600倍(10分钟),这样即使DB宕机,Leaf仍能持续发号10-20分钟不受影响。
优点:
- Leaf服务可以很方便的线性扩展,性能完全能够支撑大多数业务场景。
- 容灾性高:Leaf服务内部有号段缓存,即使DB宕机,短时间内Leaf仍能正常对外提供服务。
缺点:
- ID号码不够随机,能够泄露发号数量的信息,不太安全。
- DB宕机会造成整个系统不可用(用到数据库的都有可能)。
二、Leaf-snowflake
Leaf-snowflake基本上就是沿用了snowflake的设计,ID组成结构:正数位(占1比特)+ 时间戳(占41比特)+ 机器ID(占5比特)+ 机房ID(占5比特)+ 自增值(占12比特),总共64比特组成的一个Long类型。
Leaf-snowflake不同于原始snowflake算法地方,主要是在workId的生成上,Leaf-snowflake依靠Zookeeper生成workId,也就是上边的机器ID(占5比特)+ 机房ID(占5比特)。Leaf中workId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。

Leaf-snowflake启动服务的过程大致如下:
- 启动Leaf-snowflake服务,连接Zookeeper,在leaf_forever父节点下检查自己是否已经注册过(是否有该顺序子节点)。
- 如果有注册过直接取回自己的workerID(zk顺序节点生成的int类型ID号),启动服务。
- 如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的workerID号,启动服务。
但Leaf-snowflake对Zookeeper是一种弱依赖关系,除了每次会去ZK拿数据以外,也会在本机文件系统上缓存一个workerID文件。一旦ZooKeeper出现问题,恰好机器出现故障需重启时,依然能够保证服务正常启动。
启动Leaf-snowflake模式也比较简单,起动本地ZooKeeper,修改一下项目中的leaf.properties文件,关闭leaf.segment模式,启用leaf.snowflake模式即可。
leaf.segment.enable=false
#leaf.jdbc.url=jdbc:mysql://127.0.0.1:3306/xin-master?useUnicode=true&characterEncoding=utf8
#leaf.jdbc.username=junkang
#leaf.jdbc.password=junkang
leaf.snowflake.enable=true
leaf.snowflake.zk.address=127.0.0.1
leaf.snowflake.port=2181
/**
* 雪花算法模式
* @param key
* @return
*/
@RequestMapping(value = "/api/snowflake/get/{key}")
public String getSnowflakeId(@PathVariable("key") String key) {
return get(key, snowflakeService.getId(key));
}
测试一下,访问:http://127.0.0.1:8080/api/snowflake/get/leaf-segment-test

优点:
- ID号码是趋势递增的8byte的64位数字,满足上述数据库存储的主键要求。
缺点:
- 依赖ZooKeeper,存在服务不可用风险(实在不知道有啥缺点了)
三、Leaf监控
请求地址:http://127.0.0.1:8080/cache
针对服务自身的监控,Leaf提供了Web层的内存数据映射界面,可以实时看到所有号段的下发状态。比如每个号段双buffer的使用情况,当前ID下发到了哪个位置等信息都可以在Web界面上查看。

总结
对于Leaf具体使用哪种模式,还是根据具体的业务场景使用,本文并没有对Leaf源码做过多的分析,因为Leaf 代码量简洁很好阅读。
原创不易,燃烧秀发输出内容,如果有一丢丢收获,点个赞鼓励一下吧!
整理了几百本各类技术电子书,送给小伙伴们。关注公号回复【666】自行领取。和一些小伙伴们建了一个技术交流群,一起探讨技术、分享技术资料,旨在共同学习进步,如果感兴趣就加入我们吧!
不能错过的分布式ID生成器(Leaf ),好用的一批!的更多相关文章
- 分布式ID生成器的解决方案总结
在互联网的业务系统中,涉及到各种各样的ID,如在支付系统中就会有支付ID.退款ID等.那一般生成ID都有哪些解决方案呢?特别是在复杂的分布式系统业务场景中,我们应该采用哪种适合自己的解决方案是十分重要 ...
- 常用的分布式ID生成器
为何需要分布式ID生成器 **本人博客网站 **IT小神 www.itxiaoshen.com **拿我们系统常用Mysql数据库来说,在之前的单体架构基本是单库结构,每个业务表的ID一般从1增,通过 ...
- c#分布式ID生成器
c#分布式ID生成器 简介 这个是根据twitter的snowflake来写的.这里有中文的介绍. 如上图所示,一个64位ID,除了最左边的符号位不用(固定为0,以保证生成的ID都是正数),还剩余 ...
- 基于redis的分布式ID生成器
基于redis的分布式ID生成器
- 分布式ID生成器PHP+Swoole实现(上) - 实现原理
1.发号器介绍 什么是发号器? 全局唯一ID生成器,主要用于分库分表唯一ID,分布式系统数据的唯一标识. 是否需要发号器? 1)是否需要全局唯一. 分布式系统应该不受单点递增ID限制,中心式的会涉及到 ...
- go语言实现分布式id生成器
本文:https://chai2010.cn/advanced-go-programming-book/ch6-cloud/ch6-01-dist-id.html 分布式id生成器 有时我们需要能够生 ...
- 来吧,自己动手撸一个分布式ID生成器组件
在经过了众多轮的面试之后,小林终于进入到了一家互联网公司的基础架构组,小林目前在公司有使用到架构组研究到分布式id生成器,前一阵子大概看了下其内部的实现,发现还是存在一些架构设计不合理之处.但是又由于 ...
- CosId 通用、灵活、高性能的分布式 ID 生成器
CosId 通用.灵活.高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用.灵活.高性能的分布式系统 ID 生成器. 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS ...
- CosId 1.0.0 发布,通用、灵活、高性能的分布式 ID 生成器
CosId 通用.灵活.高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用.灵活.高性能的分布式系统 ID 生成器. 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS ...
随机推荐
- 小谢第36问:elemet - table表格修改后表格行高亮显示且定位到当前行当前页
第一次做这个需求得时候很乱,总是在表格页和修改页徘徊,总觉得什么都会,但是就是做不出自己想要得效果 其实如果先把思路搞清楚,这个问题得知识点却是不多,以下是我对表格高亮显示得思路: 首先,我会从已知得 ...
- 日志套餐篇 - log4j2 logback全量套餐
日志套餐篇 - log4j2 logback全量套餐 前情提要: Log4j Log4j2 logback是当下主流的日志框架 slf4j则是新一代的日志框架接口,logback直接实现了slf4j接 ...
- 基于ConcurrentHashMap的本地缓存
基于ConcurrentHashMap的本地缓存 在系统中,有些数据,数据量小,但是访问十分频繁(例如国家标准行政区域数据),针对这种场景,需要将数据搞到应用的本地缓存中,以提升系统的访问效率,减少无 ...
- Lucas定理 & Catalan Number & 中国剩余定理(CRT)
又双叒叕来水数论了 今天来学习\(Lucas \:\ \& \:\ Catalan Number\) 两者有着密切的联系(当然还有CRT),所以放在一起学习一下 \(Lucas\) 定义\(\ ...
- 技术干货:Jenkins集成GitLab
Jenkins免密拉取GitLab项目 1.在Jenkins上为GitLab创建一个专有的拉取代码的账号 Jenkins需要构建哪些项目就在GitLab给予账号相应权限 我这里已经创建过Jenkins ...
- 01 安装Linux虚拟机
平常的工作学习中,Linux成为了一项比不可少的需要的掌握的技能,但是大部分人又不习惯于使用Linux进行生活,所以你需要在你的Windows电脑上安装一个虚拟机,那如何安装呢?其实不难,跟着我一步步 ...
- Google公布编程语言排名,第一竟然是他?
没想到吧,Python 又拿第一了! 在 Google 公布的编程语言流行指数中,Python 依旧是全球范围内最受欢迎的技术语言! 01 为什么 Python 会这么火? 核心还是因为企业需 ...
- 题解 洛谷 P3521 【[POI2011]ROT-Tree Rotations】
给定一棵二叉树,叶子节点有权值,可以进行若干次交换一个节点的左右儿子的操作,使前序遍历叶子的逆序对最少. 考虑一个节点下子树逆序对的产生: ① 只在左子树中产生. ② 只在右子树中产生. ③ 在左子树 ...
- Python编程入门(第3版)|百度网盘免费下载|零基础入门学习资料
百度网盘免费下载:Python编程入门(第3版) 提取码:rsd7 目录 · · · · · · 第1章 编程简介 11.1 Python语言 21.2 Python适合用于做什么 31.3 程序员 ...
- Markdown简洁语法说明
学于黑马和传智播客联合做的教学项目 感谢 黑马官网 传智播客官网 微信搜索"艺术行者",关注并回复关键词"乐优商城"获取视频和教程资料! b站在线视频 0.前言 ...