题目大意

用 \(p\) 种颜色填 \(n\times m\) 的画板,要求任意相邻两列的颜色数都不少于 \(q\) ,求方案数。

数据范围

\(1\leq n\leq 100,1\leq m\leq 10^9,q\leq p\leq 100\)

思路

观摩 \(m\) 的范围,显然需要一个 \(\log m\) 的做法,于是想到了矩阵快速幂。

首先考虑原始的转移。若当前一列涂上 \(j\) 种颜色,下一列要涂 \(k\) 种颜色,则方案数如下:

\[\sum \limits_{x=\max(q,j,k)}^{\min(p,j+k)}C_j^{j+k-x}C_{p-i}^{x-j}
\]

前一个组合数是 \(j\) 和 \(k\) 颜色中交集的部分,而后一个就是交集的补集。其中边界的意思分别为 \(j\cap k=\varnothing\) 和 \(j\subset k\) 或 \(k\subset j\)。意思就是说,这次的方案组成就是在满足条件的情况下,和上次相交的颜色的选择的方案乘上这次的新颜色的选择的方案。

然后对于每一列,定义 \(g[i][j]\),表示当前填到第 \(i\) 行的格子,涂 \(j\) 种颜色的方案数。则 \(g[n][j]\) 一列中涂 \(n\) 种颜色的方案。这个问题可以转化成有 \(j\) 个不同的盒子,要把 \(i\) 个不同的球放入盒子中,要求非空。这个问题就是第二类斯特林,递推式为:

\[g[i][j]=(g[i-1][j-1]+g[i-1][j])\times j
\]

即可以在放过球的盒子中再放一个,有 \(j\) 种,也可以新选一个没有放过球的盒子,这个新的盒子可以是 \(j\) 中的任何一个。因此一共 \(j\) 种。由于每一列的情况都是类似的,所以可以预处理出来。

那么转移矩阵就出来了。设 \(h[j][k]\) 表示这一列涂 \(j\) 种颜色,下一列涂 \(k\) 种颜色的方案数:

\[h[j][k]=g[n][j]\cdot\sum \limits_{x=\max(q,j,k)}^{\min(p,j+k)}C_j^{j+k-x}C_{p-i}^{x-j}
\]

则令 \(f[i][j]\) 为当前选到第 \(i\) 列,当前一列涂了 \(j\) 种颜色的方案数,则可以得到 \(f[i][j]=f[i-1][j]\times h[j][k]\),边界为 \(f[1][j]=g[n][j]\times C_p^j\),表示选 \(j\) 种颜色后涂上。由于 \(f\) 的转移系数与 \(i\) 无关,所以可以用矩阵快速幂优化转移 \(m-1\) 次后得到结果,时间复杂度 \(O(n^3\log m)\)。

代码

注意卡常。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=100+10;
const int Mod=998244353;
int n,m,p,q;
ll res;
ll C[maxn][maxn],g[maxn][maxn]; inline ll add(ll x,ll y){
if(x+y>Mod)return x+y-Mod;
return x+y;
} struct Mat{
ll a[maxn][maxn];
Mat(){
memset(a,0,sizeof(a));
}
inline void set(){
for(int i=1;i<=n;i++)
a[i][i]=1;
}
friend inline Mat operator *(register const Mat& A,register const Mat& B){
Mat C;
for(register int i=1;i<=p;i++)
for(register int j=1;j<=p;j++)
for(register int k=1;k<=p;k++)
C.a[i][j]=add(C.a[i][j],A.a[i][k]*B.a[k][j]%Mod);
return C;
}
}f,h; inline int read(){
int x=0;bool fopt=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')fopt=0;
for(;isdigit(ch);ch=getchar())x=(x<<3)+(x<<1)+ch-48;
return fopt?x:-x;
} inline Mat qpow(Mat x,int b){
Mat ans,base=x;
ans.set();
while(b){
if(b&1)ans=ans*base;
base=base*base;
b>>=1;
}
return ans;
} inline void Init(){
g[0][0]=C[0][0]=1;
for(int i=1;i<=100;i++){
C[i][0]=1;
for(int j=1;j<=i;j++)
C[i][j]=add(C[i-1][j],C[i-1][j-1]);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
g[i][j]=add(g[i-1][j],g[i-1][j-1])*j%Mod;
} signed main(){
n=read();m=read();p=read();q=read();
Init();
for(register int j=1;j<=p;j++)
for(register int k=1;k<=p;k++){
int l=max(max(q,j),k),r=min(p,j+k);
for(register int i=l;i<=r;i++)
h.a[j][k]=add(h.a[j][k],C[j][j+k-i]*C[p-j][i-j]%Mod);
h.a[j][k]=h.a[j][k]*g[n][k]%Mod;
}
f=qpow(h,m-1);
for(register int i=1;i<=p;i++)
for(register int j=1;j<=p;j++)
res=add(res,f.a[i][j]*C[p][i]%Mod*g[n][i]%Mod);//简单易懂的求和
printf("%lld\n",res);
return 0;
}

【矩阵乘优化DP】涂色游戏的更多相关文章

  1. CodeForces621E 快速矩阵幂优化dp

    有时些候在用快速矩阵幂优化dp的时候,它的矩阵乘法是不那么容易被具体为题目背景的意思的,大多数时候难以理解矩阵之间相乘的实际意义,正如有时候我们不知道现在在做手头这些事情的意义,但倘若是因一个目标而去 ...

  2. 形态形成场(矩阵乘法优化dp)

    形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 ...

  3. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  4. [CSP-S模拟测试]:涂色游戏(DP+组合数+矩阵快速幂)

    题目描述 小$A$和小$B$在做游戏.他们找到了一个$n$行$m$列呈网格状的画板.小$A$拿出了$p$支不同颜色的画笔,开始在上面涂色.看到小$A$涂好的画板,小$B$觉得颜色太单调了,于是把画板擦 ...

  5. NOIp十连测 涂色游戏

    [问题描述]小A 和小B 在做游戏.他们找到了一个n 行m 列呈网格状的画板.小A 拿出了p 支不同颜色的画笔,开始在上面涂色.看到小A 涂好的画板,小B 觉得颜色太单调了,于是把画板擦干净,希望涂上 ...

  6. hdu 4559 涂色游戏(对SG函数的深入理解,推导打SG表)

    提议分析: 1 <= N <= 4747 很明显应该不会有规律的,打表发现真没有 按题意应该分成两种情况考虑,然后求其异或(SG函数性质) (1)找出单独的一个(一列中只有一个) (2)找 ...

  7. [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】

    题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...

  8. 矩阵乘法优化DP

    本文讲一下一些基本的矩阵优化DP的方法技巧. 定义三个矩阵A,B,C,其中行和列分别为$m\times n,n \times p,m\times p$,(其中行是从上往下数的,列是从左往右数的) $C ...

  9. hdu 4559 涂色游戏(SG)

    在一个2*N的格子上,Alice和Bob又开始了新游戏之旅. 这些格子中的一些已经被涂过色,Alice和Bob轮流在这些格子里进行涂色操作,使用两种涂色工具,第一种可以涂色任意一个格子,第二种可以涂色 ...

  10. 【循环矩阵乘优化DP】BZOJ 2510 弱题

    题目大意 有 \(M\) 个球,一开始每个球均有一个初始标号,标号范围为 \(1\) - \(N\) 且为整数,标号为 \(i\) 的球有 \(a_i\) 个,并保证 \(\sum a_i = M\) ...

随机推荐

  1. RabbitMQ和Kafka的高可用集群原理

    前言 小伙伴们,通过前边文章的阅读,相信大家已经对RocketMQ的基本原理有了一个比较深入的了解,那么大家对当前比较常用的RabbitMQ和Kafka是不是也有兴趣了解一些呢,了解的多一些也不是坏事 ...

  2. linux下ftp如何使用

    linux下ftp可以上传.下载文件 centos7环境: 1.检查是否安装过ftp服务 rpm -qa|grep vsftpd 如果没有输出则表示没有安装过 安装ftp yum -y install ...

  3. Java基础之HashMap原理分析(put、get、resize)

    在分析HashMap之前,先看下图,理解一下HashMap的结构 我手画了一个图,简单描述一下HashMap的结构,数组+链表构成一个HashMap,当我们调用put方法的时候增加一个新的 key-v ...

  4. 教你怎么"白嫖"图床

    本次白嫖适用于有自己域名的. 访问 又拍云,注册 注册好后,访问又拍云联盟 按照说明申请即可 结束 静等通过即可,经过我与又拍云联系核实他们审核通过都会在每周五的下午18:00统一发送审核结果邮件通知 ...

  5. netty字节分包

    高并发压测时,发现来自网关的消息出现粘包现象:分包就是势在必行的 前置和处理平台(暂时)使用netty通话,由于都是服务器平台使用DelimiterBasedFrameDecoder来解决分包 和网关 ...

  6. 基于Springboot+Mybatis+Element UI开发的钢贸供应链系统

    小蓝钢贸云供应链系统以销售.采购.库存及财务一体化的设计理念,从供应商到客户的销售流程,实现订单.货物.资金的全面管控,并能对成本进行准确的跟踪与分析,为销售决策提供依据. 基于SpringBoot2 ...

  7. OOCSS是什么,该如何用?

    1 OOCSS的定义: Object Oriented css(面向对象css)的缩写,是一种用最简单的方式编写的CSS代码,从而使代码 重用性,可维护性和可扩展性更好的书写方法.   2 OOCSS ...

  8. .netcore+vue 实现压缩文件下载

    一.前言 目前接触的项目中,给定的需求是将系统内所有用户的数据整理好,并保存到文件夹内,目的主要是防止用户在实施人员已配置好的基础上由于不熟悉系统,导致的误删或者误操作.减少实施人员的配置工作.我首先 ...

  9. python的全局函数

    1.Python的全局函数 import builtins dir(builtins)  abs  # 返回参数的绝对值 可以写成函数:def absnum): if num >=0: retu ...

  10. 谈谈数据库的事务ACID

    在数据库中新建一个字段并且设置为索引列,还有删除整张表的数据,类似这些操作都是一系列操作的组合,执行后不能出现中间状态,也就是不会出现新建了字段却不是索引的情况,也不会出现只有一部分数据被删除的情况. ...