16年北京站A题 真的难啊..

题意:

定义和谐矩阵 就是每个元素和上下左右的xor值=0

输出一个超大数 然后最多800个询问 求字典序第k小的和谐矩阵 x y位置上的数

题解:

首先这个超大数的范围其实给了提示 $2^{800}$ 我们刚好想到枚举第一行 就有这么多种

确实 我们很容易发现 枚举了第一行之后 整个矩阵就可以算出来了

然后现在就要引出一个子题 P3164

关于这个子题 在2020年5月份之前洛谷上的题解都不是太正的做法

正确做法是 把第一行的每个元素当作一个未知数 然后可以推到第n行

用第n行是和谐矩阵元素的关系得到m个方程式 高斯消元解之

我们再回到这个题 我们同样可以用这样的方法 高斯消元解之 然后我们开始写了!

先用高斯消元解出系数 然后把10进制的大数转化为二进制 为什么这题有第k小呢 因为我们解出了自由元啊!

如果自由元所能提供的解 小于k就直接无解了

然后我们惊奇的发现 字典序第k小的二进制刚好就是这个问题自由元的解 一一对应填进去就行了

然后这样交上去会得到 WA!!

为什么呢? 因为我们正常解出的自由元 所对应的未知数 实际上是可以提前更换位置的啊!

那么我们可以把自由元放在最前面 以得到字典序最小

#include <stdio.h>
#include <bits/stdc++.h>
#include <iostream>
#include <algorithm>
#include <bitset>
using namespace std;
const int MAXN = 805; int n, m, q, x, y, len, rk, blen;
bitset<MAXN> a[MAXN][MAXN];
bitset<MAXN> b[MAXN];
int ans[MAXN];
int fr[MAXN];
char s[MAXN];
int t[MAXN], bit[MAXN << 3]; int dx[] = {-1, -1, -1, -2};
int dy[] = {-1, 0, 1, 0}; bool check(int x, int y) {
if(x >= 1 && x <= n && y >= 1 && y <= m) return true;
return false;
} void gauss() {
rk = 0;
for(int i = 1, now = m; i <= m && now; now--) {
for(int j = i; j <= m; j++) {
if(b[j][now]) {
std::swap(b[j], b[i]);
break;
}
}
if(!b[i][now]) {
//fr[now] = 1;
continue;
}
for(int j = i + 1; j <= m; j++) {
if(b[j][now]) {
b[j] ^= b[i];
}
}
fr[now] = i;
i++; rk++;
}
} void decode() {
blen = 0;
int llen = strlen(s + 1); memset(bit, 0, sizeof(bit));
for(int i = 1; i <= llen; i++) t[i] = s[llen - i + 1] - '0';
t[1]--;
int now = 1; while(t[now] < 0) t[now] += 10, now++, t[now]--;
while(llen && !t[llen]) llen--; while(llen) {
if(t[1] & 1) bit[++blen] = 1;
else bit[++blen] = 0; int res = 0;
for(int i = llen; i >= 1; i--) {
int tmp = (t[i] + res * 10) / 2;
res = (t[i] + res * 10) % 2;
t[i] = tmp;
}
while(llen && !t[llen]) llen--;
}
} void get() {
blen = max(blen, m - rk);
memset(ans, 0, sizeof(ans));
for(int i = 1; i <= m; i++) if(!fr[i]) ans[i] = bit[blen--];
for(int i = 1; i <= m; i++) {
if(fr[i])
for(int j = i - 1; j; j--) {
if(b[fr[i]][j]) ans[i] ^= ans[j];
}
}
} int main() {
while(~scanf("%d%d%d", &n, &m, &q)) {
memset(fr, 0, sizeof(fr));
for(int i = 1; i <= m; i++) b[i].reset();
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
a[i][j].reset();
for(int i = 1; i <= m; i++) a[1][i][i] = 1; for(int i = 2; i <= n; i++) {
for(int j = 1; j <= m; j++) {
for(int k = 0; k < 4; k++) {
int nx = i + dx[k];
int ny = j + dy[k];
if(check(nx, ny)) a[i][j] ^= a[nx][ny];
}
}
}
for(int i = 1; i <= m; i++) b[i] = a[n][i];
for(int i = 1; i <= m; i++) {
if(n - 1 >= 1) b[i] ^= a[n - 1][i];
if(i - 1 >= 1) b[i] ^= a[n][i - 1];
if(i + 1 <= m) b[i] ^= a[n][i + 1];
}
gauss();
//for(int i = 1; i <= m; i++) cout << fr[i] << " "; puts(""); //cout << m - rk << " ??" << endl;
for(int cas = 1; cas <= q; cas++) {
scanf("%s%d%d", s + 1, &x, &y);
decode();
//cout << "blen =" << blen <<endl;
if(m - rk < blen) printf("?");
else {
get();
/*
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
int res = 0;
for(int k = 1; k <= m; k++)
if(a[i][j][k]) res ^= ans[k];
printf("%d ", res);
}
puts("");
}*/ int res = 0;
for(int i = 1; i <= m; i++) if(a[x][y][i]) res ^= ans[i];
printf("%d", res);
}
}
puts("");
}
return 0;
}
/*
3 5 10
0 0 0 2 1
1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
2 1 1
0 0 1 1 1
0 1 0 1 0
1 1 1 0 0
3 1 1
0 1 0 0 0
1 1 1 0 0
0 0 0 1 0
4 1 1
0 1 1 0 1
1 0 0 0 1
1 0 1 1 0
5 1 1
1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
6 1 1
1 0 1 1 0
1 0 0 0 1
0 1 1 0 1
7 1 1
1 1 0 0 0
0 0 1 0 0
1 0 1 1 0
8 1 1
1 1 1 0 0
0 1 0 1 0
0 0 1 1 1
*/

Hiho1422 Harmonic Matrix Counter (高斯消元)的更多相关文章

  1. 算法竞赛进阶指南0x35高斯消元与线性空间

    高斯消元 目录 高斯消元 ACWing207. 球形空间产生器(点击访问) 求解思路 代码 ACWing208. 开关问题(点击访问) 思路 代码 总结 欣赏 线性空间 定义 ACWing209. 装 ...

  2. Matrix 高斯消元Gaussian elimination 中的complete pivoting和partial pivoting

    首先科普下Pivoting的含义 一般翻译为“主元”,在对矩阵做某种算法时,首先进行的部分元素.在线性规划的单纯形法中常见.wiki的解释如下:Pivot element(the first elem ...

  3. UVALive 7138 The Matrix Revolutions(Matrix-Tree + 高斯消元)(2014 Asia Shanghai Regional Contest)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...

  4. UVALive 6449 IQ Test --高斯消元?

    题意:给你一串数字,问这串数字符合f[n] = a*f[n-1],f[n] = a*f[n-1]+b*f[n-2],f[n] = a*f[n-1]+b*f[n-2]+c*f[n-3]这几个方程中的哪个 ...

  5. USACO 3.2 ratios 高斯消元

    题目原意很简单,就是解一个三元一次方程组 直接高斯消元解方程组,枚举最后一列的倍数(k) 注意double的精度,有很多细节需要处理 /* PROB:ratios LANG:C++ */ #inclu ...

  6. HDU 5833 Zhu and 772002 (高斯消元)

    Zhu and 772002 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5833 Description Zhu and 772002 are b ...

  7. 【高斯消元】兼 【期望dp】例题

    [总览] 高斯消元基本思想是将方程式的系数和常数化为矩阵,通过将矩阵通过行变换成为阶梯状(三角形),然后从小往上逐一求解. 如:$3X_1 + 2X_2 + 1X_3 = 3$ $           ...

  8. BZOJ 3640: JC的小苹果 [概率DP 高斯消元 矩阵求逆]

    3640: JC的小苹果 题意:求1到n点权和\(\le k\)的概率 sengxian orz的题解好详细啊 容易想到\(f[i][j]\)表示走到i点权为j的概率 按点权分层,可以DP 但是对于\ ...

  9. 高斯消元 & 线性基【学习笔记】

    高斯消元 & 线性基 本来说不写了,但还是写点吧 [update 2017-02-18]现在发现真的有好多需要思考的地方,网上很多代码感觉都是错误的,虽然题目通过了 [update 2017- ...

随机推荐

  1. PHP 打水印功能

    /** * @param $str 需要打水印的文字 * @param int $size 文字大小 * @param int $red 文字的颜色 rgb r * @param int $gree ...

  2. LeetCode108 将有序数组转为二叉搜索树

    将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定有序数组: [-10,-3,0, ...

  3. redis存json数据时选择string还是hash

    redis存json数据时选择string还是hash 我们在缓存json数据到redis时经常会面临是选择string类型还是选择hash类型去存储.接下来我从占用空间和IO两方面来分析这两种类型的 ...

  4. 用js实现打印九九乘法表

    用js在打印九九乘法表 思考 在学习了流程控制和条件判断后,我们可以利用js打印各式各样的九九乘法表 不管是打印什么样三角形九九乘法表,我们都应该找到有规律的地方,比如第一列的数字是什么规律,第一行的 ...

  5. CentOS | python3.7安装指南

    前言: centos系统本身默认安装有python2.x,版本x根据不同版本系统有所不同 可通过 python --V 或 python --version 查看系统自带的python版本 有一些系统 ...

  6. /etc/hosts文件

    这个文件告诉主机哪些域名对应哪些ip,哪些主机名对应哪些ip. 一般也三个域 网络ip地址 主机名或域名 主机名别名 两部分的时候 主机ip地址和主机名

  7. MoChat - 国内首款完全开源的 PHP 企业微信管理系统正式发布

    MoChat -- 让企业微信开发更简单 项目地址 Github: https://github.com/mochat-cloud/mochat Gitee: https://gitee.com/mo ...

  8. 【Linux】ssh互信脚本

    使用互信脚本的时候,需要敲回车,但是shell脚本无法满足,所以需要用到expect脚本 rpm -qa | grep expect 如果没有的话,直接用yum安装即可 yum install exp ...

  9. Eclipse中给jar包导入JavaDoc的方法

    原文转载自:http://blog.csdn.net/mr_von/article/details/7740138 在使用Java语言开发的过程中,开发人员经常需要用到一些开源的工具包.在使用别人的j ...

  10. ABAP-ALV-如何去掉OO方法中的ALV的标准按钮

    SAP在做报表开发中,不同公司对报表的风格往往各异,为此经常在使用OO方法做ALV报表中需要去掉自带的工具栏而自行添加一些工具按钮,下面将简单介绍一些其实现过程与原理: 步骤一: DATA : gt_ ...