Grouping-and-sorting

教程

映射使我们可以一次将整个列中的数据转换为DataFrame或Series中的一个值。 但是,通常我们希望对数据进行分组,然后对数据所在的组进行特定的操作。
正如您将学到的,我们使用groupby()操作来完成此操作。 我们还将介绍一些其他主题,例如为DataFrames编制索引的更复杂方法以及如何对数据进行排序。

Groupwise analysis

到目前为止,我们一直在使用的一个函数是value_counts()函数。 我们可以通过执行以下操作来复制value_counts()的功能:

reviews.groupby('points').points.count()

groupby()创建了一组reviews,这些reviews为给定的葡萄酒分配了相同的分值。 然后,对于每个组,我们都抓住了points()列并计算了它出现的次数。 value_counts()只是该groupby()操作的快捷方式。
我们可以将之前使用的任何汇总功能与此数据一起使用。 例如,要获取每个点值类别中最便宜的葡萄酒,我们可以执行以下操作:

reviews.groupby('points').price.min()

您可以将我们生成的每个组视为DataFrame的一部分,其中仅包含具有匹配值的数据。 我们可以使用apply()方法直接访问此DataFrame,然后我们可以按照自己认为合适的任何方式来操作数据。 例如,这是一种从数据集中的每个酿酒厂中选择第一批葡萄酒名称的方法:

reviews.groupby('winery').apply(lambda df: df.title.iloc[0])

为了获得更细粒度的控制,您还可以按多个列进行分组。 例如,以下是我们如何按国家和省份挑选最佳葡萄酒的方法:

reviews.groupby(['country', 'province']).apply(lambda df: df.loc[df.points.idxmax()])

分类结果如下

另一个值得一提的groupby()方法是agg(),它使您可以同时在DataFrame上运行许多不同的函数。 例如,我们可以生成数据集的简单统计摘要,如下所示:

reviews.groupby(['country']).price.agg([len, min, max])

Multi-indexes

到目前为止,在所有示例中,我们一直在使用带有单标签索引的DataFrame或Series对象。 groupby()稍有不同,因为它取决于我们运行的操作,有时会导致所谓的多索引。
多索引与常规索引的不同之处在于它具有多个级别。 例如:

countries_reviewed = reviews.groupby(['country', 'province']).description.agg([len])
countries_reviewed

mi = countries_reviewed.index
type(mi)

Output:

pandas.core.indexes.multi.MultiIndex

多索引有几种方法来处理它们的分层结构,而单级索引则没有。 它们还需要两个级别的标签才能检索值。 对于刚接触pandas的用户来说,处理多索引输出是常见的“陷阱”。
pandas文档的“多索引/高级选择”部分中详细说明了多索引的使用案例以及使用说明。

但是,通常,您最常使用的多索引方法是一种可转换回常规索引的方法,即reset_index()方法:

Sorting

再次查看countries_reviewed,我们可以看到分组以索引顺序而不是以值顺序返回数据。 也就是说,在输出groupby的结果时,行的顺序取决于索引中的值,而不取决于数据中的值。
要按需要的顺序获取数据,我们可以自己对其进行排序。 sort_values()方法很方便。

countries_reviewed = countries_reviewed.reset_index()
countries_reviewed.sort_values(by='len')

Output:

要按索引值排序,请使用配套方法sort_index()。 此方法具有相同的参数和默认顺序:

countries_reviewed.sort_index()

Output:

练习

1

Who are the most common wine reviewers in the dataset? Create a Series whose index is the taster_twitter_handle category from the dataset, and whose values count how many reviews each person wrote.

# Your code here
reviews_written = reviews.groupby("taster_twitter_handle").taster_twitter_handle.count()
print(reviews_written) # Check your answer
q1.check()

2.

What is the best wine I can buy for a given amount of money? Create a Series whose index is wine prices and whose values is the maximum number of points a wine costing that much was given in a review. Sort the values by price, ascending (so that 4.0 dollars is at the top and 3300.0 dollars is at the bottom).

best_rating_per_price = reviews.groupby('price')['points'].max().sort_index()
# Check your answer
q2.check()

3.

What are the minimum and maximum prices for each variety of wine? Create a DataFrame whose index is the variety category from the dataset and whose values are the min and max values thereof.

price_extremes = reviews.groupby('variety')["price"].agg([min,max])

# Check your answer
q3.check()

4.

What are the most expensive wine varieties? Create a variable sorted_varieties containing a copy of the dataframe from the previous question where varieties are sorted in descending order based on minimum price, then on maximum price (to break ties).

sorted_varieties = price_extremes.sort_values(by=['min', 'max'], ascending=False)
# Check your answer
q4.check()

5.

Create a Series whose index is reviewers and whose values is the average review score given out by that reviewer. Hint: you will need the taster_name and points columns.

reviewer_mean_ratings = reviews.groupby('taster_name').points.mean()

# Check your answer
q5.check()

6.

What combination of countries and varieties are most common? Create a Series whose index is a MultiIndexof {country, variety} pairs. For example, a pinot noir produced in the US should map to {"US", "Pinot Noir"}. Sort the values in the Series in descending order based on wine count.

country_variety_counts = reviews.groupby(['country', 'variety']).size().sort_values(ascending=False)

# Check your answer
q6.check()

Kaggle-pandas(4)的更多相关文章

  1. 由Kaggle竞赛wiki文章流量预测引发的pandas内存优化过程分享

    pandas内存优化分享 缘由 最近在做Kaggle上的wiki文章流量预测项目,这里由于个人电脑配置问题,我一直都是用的Kaggle的kernel,但是我们知道kernel的内存限制是16G,如下: ...

  2. kaggle入门2——改进特征

    1:改进我们的特征 在上一个任务中,我们完成了我们在Kaggle上一个机器学习比赛的第一个比赛提交泰坦尼克号:灾难中的机器学习. 可是我们提交的分数并不是非常高.有三种主要的方法可以让我们能够提高他: ...

  3. Kaggle入门教程

    此为中文翻译版 1:竞赛 我们将学习如何为Kaggle竞赛生成一个提交答案(submisson).Kaggle是一个你通过完成算法和全世界机器学习从业者进行竞赛的网站.如果你的算法精度是给出数据集中最 ...

  4. 如何使用Python在Kaggle竞赛中成为Top15

    如何使用Python在Kaggle竞赛中成为Top15 Kaggle比赛是一个学习数据科学和投资时间的非常的方式,我自己通过Kaggle学习到了很多数据科学的概念和思想,在我学习编程之后的几个月就开始 ...

  5. kaggle数据挖掘竞赛初步--Titanic<原始数据分析&缺失值处理>

    Titanic是kaggle上的一道just for fun的题,没有奖金,但是数据整洁,拿来练手最好不过啦. 这道题给的数据是泰坦尼克号上的乘客的信息,预测乘客是否幸存.这是个二元分类的机器学习问题 ...

  6. kaggle& titanic代码

    这两天报名参加了阿里天池的’公交线路客流预测‘赛,就顺便先把以前看的kaggle的titanic的训练赛代码在熟悉下数据的一些处理.题目根据titanic乘客的信息来预测乘客的生还情况.给了titan ...

  7. 初窥Kaggle竞赛

    初窥Kaggle竞赛 原文地址: https://www.dataquest.io/mission/74/getting-started-with-kaggle 1: Kaggle竞赛 我们接下来将要 ...

  8. 逻辑回归应用之Kaggle泰坦尼克之灾(转)

    正文:14pt 代码:15px 1 初探数据 先看看我们的数据,长什么样吧.在Data下我们train.csv和test.csv两个文件,分别存着官方给的训练和测试数据. import pandas ...

  9. kaggle之Grupo Bimbo Inventory Demand

    Grupo Bimbo Inventory Demand kaggle比赛解决方案集合 Grupo Bimbo Inventory Demand 在这个比赛中,我们需要预测某个产品在某个销售点每周的需 ...

  10. kaggle之人脸特征识别

    Facial_Keypoints_Detection github code facial-keypoints-detection, 这是一个人脸识别任务,任务是识别人脸图片中的眼睛.鼻子.嘴的位置. ...

随机推荐

  1. 外部应用复制 表格 到word中 设置表格自适应

    word 批量设置表格宽度自适应 描述 : 我们经常从 外部 如 excel,html 等其他文件 中复制的表格到word 文档 经常会出现在 word 中显示不全的问题 主要是源格式的表格 宽度比 ...

  2. CSRF原理及防御

    CSRF原理及防御 CSRF攻击原理 CSRF攻击利用网站对用户的信任,以用户的身份发送请求来执行攻击者所要的操作,比如:转账.发邮件.修改密码.添加用户等. CSRF和XSS一样危害都特别大,只不过 ...

  3. Java String:字符串常量池(转)

    作为最基础的引用数据类型,Java 设计者为 String 提供了字符串常量池以提高其性能,那么字符串常量池的具体原理是什么? 字符串常量池的设计思想是什么? 字符串常量池在哪里? 如何操作字符串常量 ...

  4. Scala 基础(十四):Scala 模式匹配(二)

    1 匹配数组 1)Array(0) 匹配只有一个元素且为0的数组. 2)Array(x,y) 匹配数组有两个元素,并将两个元素赋值为x和y.当然可以依次类推Array(x,y,z) 匹配数组有3个元素 ...

  5. Python之迭代器、装饰器、软件开发规范

    本节内容 迭代器&生成器 装饰器 Json & pickle 数据序列化 软件目录结构规范 作业:ATM项目开发 1.列表生成式,迭代器&生成器 列表生成式 孩子,我现在有个需 ...

  6. C#各类集合介绍

    集合(Collection)类是专门用于数据存储和检索的类.这些类提供了对栈(stack).队列(queue).列表(list)和哈希表(hash table)的支持.大多数集合类实现了相同的接口. ...

  7. Idea 自定义快捷代码输入 如syso => System.out.println()

    前言 之前一直用的Eclipse System.out.println()的快捷代码输入 是 syso,但是在Idea 不好使用了,后来搜索了一番才知道,在Idea中的快捷输入是 sout,这里我就想 ...

  8. Spring Boot 2.x基础教程:进程内缓存的使用与Cache注解详解

    随着时间的积累,应用的使用用户不断增加,数据规模也越来越大,往往数据库查询操作会成为影响用户使用体验的瓶颈,此时使用缓存往往是解决这一问题非常好的手段之一.Spring 3开始提供了强大的基于注解的缓 ...

  9. Python之threading初探

    threading库主要用于基于线程的并行,核心就是Thread类   class threading.Thread(group=None, target=None, name=None, args= ...

  10. 用Python爬取双色球开奖信息,了解一下

    1工具     2具体方法 1.使用python2.7编写爬取脚本 这里除了正常的爬取操作,还增加了独立的参数设定.如果没有参数,爬取的数据就在当前目录下:如果有参数,可以设定保存目录.保存文件名后缀 ...