题意:带修求区间k小

题解:回忆在使用主席树求区间k小时 利用前缀和的思想 既然是前缀和 那么我们可以使用更擅长维护前缀和的树状数组

   但是这里每一颗权值线段树就不是带版本的 而是维护数组里i号点的权值信息 所以实际上并不是主席树 每一棵和前面一棵并没有共用结点

   对于一次修改操作 我们先删去这个点的原信息 再更新进去 树状数组上的点一起跳 可能看代码比较好理解一点

   这个方法限制性也很强 必须离线

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1e5 + 2; int n, m, len, cnt;
int a[100005];
int b[200005];
int sum[MAXN * 400];
int ls[MAXN * 400];
int rs[MAXN * 400];
int t[MAXN];
int temp[2][50];
int tot1, tot0; struct node {
char opt;
int u, v, w;
}E[100005]; void add(int &o, int l, int r, int k, int v) {
if(!o) o = ++cnt;
sum[o] += v;
int mid = l + r >> 1;
if(l == r) return; if(k <= mid) add(ls[o], l, mid, k, v);
else add(rs[o], mid + 1, r, k, v);
} void update(int x, int pos, int v) {
for(int i = x; i <= n; i += (i & -i)) add(t[i], 1, len, pos, v);
} void prepare_query(int l, int r) {
tot1 = tot0 = 0;
for(int i = r; i >= 1; i -= (i & -i)) temp[1][++tot1] = t[i];
for(int i = l; i >= 1; i -= (i & -i)) temp[0][++tot0] = t[i];
} int query(int l, int r, int k) {
if(l == r) return l; int mid = l + r >> 1;
int res = 0;
for(int i = 1; i <= tot1; i++) res += sum[ls[temp[1][i]]];
for(int i = 1; i <= tot0; i++) res -= sum[ls[temp[0][i]]];
if(res >= k) {
for(int i = 1; i <= tot1; i++) temp[1][i] = ls[temp[1][i]];
for(int i = 1; i <= tot0; i++) temp[0][i] = ls[temp[0][i]];
return query(l, mid, k);
} else {
for(int i = 1; i <= tot1; i++) temp[1][i] = rs[temp[1][i]];
for(int i = 1; i <= tot0; i++) temp[0][i] = rs[temp[0][i]];
return query(mid + 1, r, k - res);
}
} char s[5];
int main() {
cnt = 0;
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++) scanf("%d", &a[i]), b[i] = a[i];
len = n; for(int i = 1; i <= m; i++) {
scanf("%s", s);
E[i].opt = s[0];
if(E[i].opt == 'Q') scanf("%d%d%d", &E[i].u, &E[i].v, &E[i].w);
else {
scanf("%d%d", &E[i].u, &E[i].v);
b[++len] = E[i].v;
}
}
sort(b + 1, b + 1 + len);
len = unique(b + 1, b + 1 + len) - b - 1; for(int i = 1; i <= n; i++) {
int tt = lower_bound(b + 1, b + 1 + len, a[i]) - b;
update(i, tt, 1);
} for(int i = 1; i <= m; i++) {
if(E[i].opt == 'Q') {
prepare_query(E[i].u - 1, E[i].v);
printf("%d\n", b[query(1, len, E[i].w)]);
} else {
int t1 = lower_bound(b + 1, b + 1 + len, a[E[i].u]) - b;
update(E[i].u, t1, -1);
a[E[i].u] = E[i].v;
int t2 = lower_bound(b + 1, b + 1 + len, a[E[i].u]) - b;
update(E[i].u, t2, 1);
}
}
return 0;
}

P2617 Dynamic Rankings (动态开点权值线段树 + 树状数组)的更多相关文章

  1. [NOIP2015模拟10.27] [JZOJ4270] 魔道研究 解题报告(动态开点+权值线段树上二分)

    Description “我希望能使用更多的魔法.不对,是预定能使用啦.最终我要被大家称呼为大魔法使.为此我决定不惜一切努力.”——<The Grimoire of Marisa>雾雨魔理 ...

  2. HDU 6464.免费送气球-动态开点-权值线段树(序列中第first小至第second小的数值之和)(感觉就是只有一个状态的主席树) (“字节跳动-文远知行杯”广东工业大学第十四届程序设计竞赛)

    免费送气球 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  3. P2617 Dynamic Rankings 动态主席树

    \(\color{#0066ff}{ 题目描述 }\) 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i ...

  4. Luogu P2617 Dynamic Rankings(整体二分)

    题目 动态区间第K小模板题. 一个非常可行的办法是BIT套动态开点权值SegTree,但是它跑的实在太慢了. 然后由于这题并没有强制在线,所以我们可以使用整体二分来吊打树套树. 当然如果强制在线的话就 ...

  5. [luogu P2617] Dynamic Rankings 带修主席树

    带修改的主席树,其实这种,已经不能算作主席树了,因为这个没有维护可持久化的... 主席树直接带修改的话,由于这种数据结构是可持久化的,那么要相应改动,这个节点以后所有的主席树,这样单次修改,就达到n* ...

  6. 【树状数组套权值线段树】bzoj1901 Zju2112 Dynamic Rankings

    谁再管这玩意叫树状数组套主席树我跟谁急 明明就是树状数组的每个结点维护一棵动态开结点的权值线段树而已 好吧,其实只有一个指针,指向该结点的权值线段树的当前结点 每次查询之前,要让指针指向根结点 不同结 ...

  7. Dynamic Rankings(树状数组套权值线段树)

    Dynamic Rankings(树状数组套权值线段树) 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[ ...

  8. luogu3224 永无乡(动态开点,权值线段树合并)

    luogu3224 永无乡(动态开点,权值线段树合并) 永无乡包含 n 座岛,编号从 1 到 n ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 n 座岛排名,名次用 1 到 n 来表示.某些 ...

  9. [BZOJ 3295] [luogu 3157] [CQOI2011]动态逆序对(树状数组套权值线段树)

    [BZOJ 3295] [luogu 3157] [CQOI2011] 动态逆序对 (树状数组套权值线段树) 题面 给出一个长度为n的排列,每次操作删除一个数,求每次操作前排列逆序对的个数 分析 每次 ...

随机推荐

  1. JavaScript高级程序设计(第4版)知识点总结

    介绍 JavaScript高级程序设计 第四版,在第三版的基础上添加了ES6相关的内容.如let.const关键字,Fetch API.工作者线程.模块.Promise 等.适合具有一定编程经验的 W ...

  2. vue-vite浅析

    大家好,我是小雨小雨,致力于分享有趣的.实用的文章. 内容分为原创和翻译,如果有问题,欢迎随时评论或私信,很乐意和大家一起探讨,一起进步. 分享不易,希望能够得到大家的支持和关注. vite出了好久了 ...

  3. 借助window.performance实现基本的前端基础性能监控日志

    借助window.performance实现基本的前端基础性能监控日志并二次重写console方法方便日常前端console日志的调试 npm install sn-console

  4. 【JDBC核心】获取数据库连接

    获取数据库连接 要素一:Driver 接口实现类 Driver 接口: java.sql.Driver 接口是所有 JDBC 驱动程序需要实现的接口.这个接口是提供给数据库厂商使用的,不同数据库厂商提 ...

  5. 如何在 Vite 中使用 Element UI + Vue 3

    在上篇文章<2021新年 Vue3.0 + Element UI 尝鲜小记>里,我们尝试使用了 Vue CLI 创建 Vue 3 + Element UI 的项目,而 Vue CLI 实际 ...

  6. 【Linux】history用法

    通过history命令可以查看我们在系统中输入过的命令 history命令的一些常用参数 -c  清空内存中命令历史 -d #  删除指定的历史命令,比如 history -d 100 ,就是删除第1 ...

  7. java锁的对象引用

    当访问共享的可变数据时,通常需要同步.一种避免使用同步的方式就是不共享数据. 如果数据仅在单线程内访问,就不需要同步,这种技术称为"线程封闭",它是实现线程安全性最简单方式之一. ...

  8. VB基础总结

    前段时间用VB写了一个简单窗口小应用,久了不碰VB,都忘了,下面用思维导图简单总结了一些基础的东西,方便以后快速查阅.

  9. 微服务网关1-Spring Cloud Gateway简介

    一.网关基本概念 1.API网关介绍 ​ API 网关出现的原因是微服务架构的出现,不同的微服务一般会有不同的网络地址,而外部客户端可能需要调用多个服务的接口才能完成一个业务需求,如果让客户端直接与各 ...

  10. Linux内核[CVE-2016-5195] (dirty COW)原理分析

    [原创]Linux内核[CVE-2016-5195] (dirty COW)原理分析-二进制漏洞-看雪论坛-安全社区|安全招聘|bbs.pediy.com https://bbs.pediy.com/ ...