Spark SQL 自定义函数类型
Spark SQL 自定义函数类型
一、spark读取数据
前段时间一直在研究GeoMesa下的Spark JTS,Spark JTS支持用户自定义函数,然后有一份数据,读取文件:
package com.geomesa.spark.SparkCore
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{ArrayType, DataTypes, StringType, StructField, StructType}
object test {
def main(args: Array[String]): Unit = {
import org.locationtech.geomesa.spark.jts._
//spark
val spark: SparkSession = {
SparkSession.builder()
.appName("test")
.master("local[*]")
.getOrCreate()
//需注入spark.jts._包
.withJTS
}
val dataFile = this.getClass.getClassLoader.getResource("gsmc.txt").getPath
val df = spark.read
.schema(schema)
.json(dataFile)
//.show(5, false)
//.printSchema()
}
}
二、自定义函数结构
然后打印出来的数据结构如下,通过spark sql的自定义函数构建这个结构的数据,主要构建features下的相关数据结构,之前耗时N久,各种不会构建以及构建错误,后,皇天不负有心人,搞就是了,搞出来了。
root
|-- crs: struct (nullable = true)
| |-- properties: struct (nullable = true)
| | |-- name: string (nullable = true)
| |-- type: string (nullable = true)
|-- features: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- geometry: struct (nullable = true)
| | | |-- coordinates: array (nullable = true)
| | | | |-- element: array (containsNull = true)
| | | | | |-- element: array (containsNull = true)
| | | | | | |-- element: double (containsNull = true)
| | | |-- type: string (nullable = true)
| | |-- geometry_name: string (nullable = true)
| | |-- id: string (nullable = true)
自定义格式如下:
val schema = StructType(Array(
StructField("crs", StringType),
StructField("features", ArrayType(
StructType(Array(StructField("geometry",
StructType(Array(StructField("coordinates",
ArrayType(DataTypes.createArrayType(ArrayType((DataTypes.DoubleType)))))
)))))))
))
经过printSchema()方法测试,结构如上面的features结构一模一样,nice。
三、附上长长的各种pom
<properties>
<geospark.version>1.2.0</geospark.version>
<geotools.version>14.1</geotools.version>
<spark.version>2.3.1</spark.version>
<encoding>UTF-8</encoding>
<scala.binary.version>2.11</scala.binary.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.11.0</version>
</dependency>
<dependency>
<groupId>org.datasyslab</groupId>
<artifactId>geospark</artifactId>
<version>${geospark.version}</version>
</dependency>
<dependency>
<groupId>org.geotools</groupId>
<artifactId>gt-geometry</artifactId>
<version>20.0</version>
</dependency>
<dependency>
<groupId>com.vividsolutions</groupId>
<artifactId>jts</artifactId>
<version>1.13</version>
</dependency>
<dependency>
<groupId>org.json</groupId>
<artifactId>json</artifactId>
<version>20180813</version>
</dependency>
<dependency>
<groupId>com.esri.geometry</groupId>
<artifactId>esri-geometry-api</artifactId>
<version>2.2.2</version>
</dependency>
<dependency>
<groupId>org.geotools</groupId>
<artifactId>gt-geojson</artifactId>
<version>${geotools.version}</version>
</dependency>
<dependency>
<groupId>org.geotools</groupId>
<artifactId>gt-api</artifactId>
<version>${geotools.version}</version>
</dependency>
<dependency>
<groupId>org.geotools</groupId>
<artifactId>gt-referencing</artifactId>
<version>${geotools.version}</version>
</dependency>
<dependency>
<groupId>org.locationtech.geomesa</groupId>
<artifactId>geomesa-spark-jts_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.geotools</groupId>
<artifactId>gt-epsg-hsql</artifactId>
<version>${geotools.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-catalyst_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.locationtech.jts.io</groupId>
<artifactId>jts-io-common</artifactId>
<version>1.16.0</version>
</dependency>
<dependency>
<groupId>org.locationtech.jts</groupId>
<artifactId>jts-core</artifactId>
<version>1.16.0</version>
</dependency>
<dependency>
<groupId>org.locationtech.spatial4j</groupId>
<artifactId>spatial4j</artifactId>
<version>0.6</version>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.47</version>
</dependency>
<!--redis-->
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>2.9.0</version>
</dependency>
</dependencies>
Spark SQL 自定义函数类型的更多相关文章
- SQL自定义函数split分隔字符串
SQL自定义函数split分隔字符串 一.F_Split:分割字符串拆分为数据表 Create FUNCTION [dbo].[F_Split] ( @SplitString nvarchar(max ...
- MS SQL自定义函数IsPositiveInteger MS SQL自定义函数IsNumeric 水晶报表使用IEnumerable<T>数据源
MS SQL自定义函数IsPositiveInteger 判断字符串是否为正整数,0开始的的数字不算. SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON ...
- sql自定义函数及C#中调用
1.在C#中调用sql自定义函数 1.1 标量值函数 sql语句调用 select dbo.GetClassIDWithName(1) string strSql = string.Format(& ...
- sql 自定义函数--固定格式字符转时间类型
遇到一个德国的客户,他们的时间格式是JJJJ-TT-DD HH:MM:SS,程序按照这个格式将时间插入数据库,但是在sql自带的转换函数convert.cast过程中报错,网上搜了下都说用conver ...
- 详解Spark sql用户自定义函数:UDF与UDAF
UDAF = USER DEFINED AGGREGATION FUNCTION Spark sql提供了丰富的内置函数供猿友们使用,辣为何还要用户自定义函数呢?实际的业务场景可能很复杂,内置函数ho ...
- Spark学习之路(十一)—— Spark SQL 聚合函数 Aggregations
一.简单聚合 1.1 数据准备 // 需要导入spark sql内置的函数包 import org.apache.spark.sql.functions._ val spark = SparkSess ...
- Spark 系列(十一)—— Spark SQL 聚合函数 Aggregations
一.简单聚合 1.1 数据准备 // 需要导入 spark sql 内置的函数包 import org.apache.spark.sql.functions._ val spark = SparkSe ...
- Spark SQL 用户自定义函数UDF、用户自定义聚合函数UDAF 教程(Java踩坑教学版)
在Spark中,也支持Hive中的自定义函数.自定义函数大致可以分为三种: UDF(User-Defined-Function),即最基本的自定义函数,类似to_char,to_date等 UDAF( ...
- PL/SQL自定义函数
从SQL表达式中调用函数的限制 为了从SQL表达式中调用函数,一个用户定义函数必须: 是存储函数 只接受IN函数 只接收有受的SQL数据类型,而不接受PL/SQL数据类型 返回数据类型为有效的SQL数 ...
随机推荐
- File对象目录列表器
/****File对象即能代表一个文件又能代表一组目录下的特定文件集:如果它代表一组文件那可以用list方法返回一组字符数组,数组内的对象是该目录下的符合条件的每个文件. 为什么说符合条件下这个前提呢 ...
- Azure Service Bus(三)在 .NET Core Web 应用程序发送ServiceBus Queue
一,引言 在之前上一篇讲解到 Azure ServiceBus Queue 中,我们实地的演示了在控制台中如何操作ServiceBus Queue ,使用 Azure.Messgae.Service ...
- git 知识点积累
1.初始化指定目录作为git目录 git init newpro 2.git add xx.uve 3.克隆项目 git clone git clone git://github.com/schac ...
- ABP vNext EventBus For RabbitMQ 分布式事件总线使用注意事项_补充官网文档
[https://docs.abp.io/zh-Hans/abp/latest/Distributed-Event-Bus-RabbitMQ-Integration](ABP vNext官方文档链接) ...
- 5款极简极美WordPress主题,亲测可用附送源码
2020年深冬,新闻上报道是.从1950年以来最寒冷的冬天. 一个周六的下午,我找遍了全网的简约博客主题,搭建了三年来的第7个独立博客, 多么难得的周末啊,我却在家花了一整天的时间.整理出直接套用5️ ...
- 使用BigDecimal舍小数取整数
项目需求说明: 解决WMS系统收货容差问题,例如:SKU的采购数量95件,容差是5,95+95*5/100=99.75,传WMS的数量是99,且容差传零. 参数说明: 其中ROUND_UP:向上取整, ...
- Solon rpc 之 SocketD 协议 - 消息订阅模式
Solon rpc 之 SocketD 协议系列 Solon rpc 之 SocketD 协议 - 概述 Solon rpc 之 SocketD 协议 - 消息上报模式 Solon rpc 之 Soc ...
- P4292 [WC2010]重建计划 点分治+单调队列
题目描述 题目传送门 分析 看到比值的形式就想到 \(01分数规划\),二分答案 设当前的值为 \(mids\) 如果存在\(\frac{\sum _{e \in S} v(e)}{|S|} \geq ...
- SpringBoot初识日志
SpringBoot初识日志 1.市面上的日志框架: JUL.JCL.Jboss-logging.logback.log4j.log4j2.slf4j- 日志门面(日志的抽象层) 日志实现 SLF4j ...
- mmal商城商品模块总结
学习目标 FTP服务器的对接 SpringMVC文件上传 流读取properties配置文件 抽象POJO.BO.VO对象之间的转换关系及解决思路 joda-time快速入门 静态代码块 mybati ...