题意: (欧洲人自己写的题面就是不一样啊...各种吐槽...果断还是看晕了)

有向图, 有个源叫CCS, 求从CCS到其他所有点的最短路之和, 以及从其他所有点到CCS的最短路之和.

思路:

返回的时候是多个源,但是因为终点只有一个,所以把所有边反向之后, 再SPFA一次源即可.

#include<cstdio>
#include<vector>
#include<queue>
const int MAXN=1000000+10;
typedef long long ll;
const ll inf=1e60;
using namespace std;
struct Node{
int v,w;
};
vector<Node>mp1[MAXN];//正向建图
vector<Node>mp2[MAXN];//反向建图
int n,m;
ll cost[MAXN]; void SPFA(int u,vector<Node>mp[]){
for(int i=2;i<=n;i++)cost[i]=inf;
cost[1]=0;
queue<int>Q;
Q.push(u);
while(!Q.empty()){
int u=Q.front();
Q.pop();
for(int i=0;i<mp[u].size();i++){
int v=mp[u][i].v;
int w=mp[u][i].w;
if(cost[v]>cost[u]+w){
cost[v]=cost[u]+w;
Q.push(v);
}
}
}
} int main(){
int _case;
scanf("%d",&_case);
while(_case--){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
mp1[i].clear();
mp2[i].clear();
}
for(int i=1;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
Node p1,p2;
p1.v=u,p2.v=v,p1.w=p2.w=w;
mp1[u].push_back(p2);
mp2[v].push_back(p1);
}
SPFA(1,mp1);//正向求一次
ll ans=0;
for(int i=2;i<=n;i++){
ans+=cost[i];
}
SPFA(1,mp2);//反向求一次
for(int i=2;i<=n;i++){
ans+=cost[i];
}
printf("%lld\n",ans);
}
return 0;
}

自己敲一遍:

#include <cstdio>
#include <vector>
#include <cstring>
#include <queue>
using namespace std;
typedef long long ll;
const int MAXN = 1e6+5;
const ll INF = 0x3f3f3f3f3f3f3f3fll;
typedef struct node
{
int v,w;
node(){}
node(int _v, int _w):v(_v),w(_w){}
}node; int n,m;
bool inq[MAXN];
ll cost[MAXN];
vector<node> g1[MAXN],g2[MAXN]; ll SPFA(int op)
{
memset(cost,0x3f,sizeof(cost));
memset(inq,false,sizeof(inq));
cost[1] = 0;
queue<int> q;
q.push(1);
inq[1] = true;
while(!q.empty())
{
int now = q.front();q.pop();
inq[now] = false;
for(int i=0,v,w;i<((op==1)?g1[now].size():g2[now].size());i++)
{
if(op==1)
{
v = g1[now][i].v, w = g1[now][i].w;
}
else
{
v = g2[now][i].v, w = g2[now][i].w;
}
if(cost[v] > cost[now] + w)
{
cost[v] = cost[now] + w;
if(!inq[v])
{
q.push(v);
inq[v] = true;
}
}
}
}
ll ret = 0;
for(int i=2;i<=n;i++)
ret += cost[i];
return ret;
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
{
g1[i].clear();
g2[i].clear();
}
for(int i=0,u,v,w;i<m;i++)
{
scanf("%d %d %d",&u,&v,&w);
g1[u].push_back(node(v,w));
g2[v].push_back(node(u,w));
}
ll ans = 0;
ans += SPFA(1);
ans += SPFA(2);
printf("%d\n",(int)ans);
}
}

[HDU 1535]Invitation Cards[SPFA反向思维]的更多相关文章

  1. hdu 1535 Invitation Cards(SPFA)

    Invitation Cards Time Limit : 10000/5000ms (Java/Other)   Memory Limit : 65536/65536K (Java/Other) T ...

  2. HDU 1535 Invitation Cards(SPFA,及其优化)

    题意: 有编号1-P的站点, 有Q条公交车路线,公交车路线只从一个起点站直接到达终点站,是单向的,每条路线有它自己的车费. 有P个人早上从1出发,他们要到达每一个公交站点, 然后到了晚上再返回点1. ...

  3. HDU 1535 Invitation Cards(最短路 spfa)

    题目链接: 传送门 Invitation Cards Time Limit: 5000MS     Memory Limit: 32768 K Description In the age of te ...

  4. HDU - 1535 Invitation Cards 前向星SPFA

    Invitation Cards In the age of television, not many people attend theater performances. Antique Come ...

  5. hdu 1535 Invitation Cards(spfa)

    Invitation Cards Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  6. HDU 1535 Invitation Cards(逆向思维+邻接表+优先队列的Dijkstra算法)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1535 Problem Description In the age of television, n ...

  7. hdu 1535 Invitation Cards (最短路径)

    Invitation Cards Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  8. HDU 1535 Invitation Cards (最短路)

    题目链接 Problem Description In the age of television, not many people attend theater performances. Anti ...

  9. HDU 1535 Invitation Cards (POJ 1511)

    两次SPFA. 求 来 和 回 的最短路之和. 用Dijkstra+邻接矩阵确实好写+方便交换.可是这个有1000000个点.矩阵开不了. d1[]为 1~N 的最短路. 将全部边的 邻点 交换. d ...

随机推荐

  1. linux core dump学习

    1. core dump是什么? core dump又叫核心转储,当操作系统收到特定的signal时, 会生成某个进程的core dump文件.这样程序员可以根据 已经生成的core dump文件来d ...

  2. Swift 2.0 封装图片折叠效果

    文/猫爪(简书作者)原文链接:http://www.jianshu.com/p/688c491580e3著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”. 用Swift封装图片折叠效果 b ...

  3. 自定义seekbar中,thumb被覆盖掉一部分问题

  4. andorid 开发笔记 -- 问题与解决

    1. SQLiteDataBase 中 TimeStamp 转化为 Date 的问题:java.text.ParseException: Unparseable date: "Sun Jan ...

  5. QQ在线联系代码

    添加图文模块,标题地址:tencent://message/?uin=你的QQ号&Site=myqq&Menu=yes "你的QQ号"就写您自己的Q号 图片地址写: ...

  6. tomcat 支持https

    HTTP是平时浏览网页时候使用的一种协议.HTTP协议传输的数据都是未加密的,也就是明文的,因此使用HTTP协议传输隐私信息非常不安全.为了保证 这些隐私数据能加密传输,于是网景公司设计了SSL(Se ...

  7. ubuntu终端命令

    整个电脑都划成ubuntu用. 装软件时的一个明显感觉就是很多事情,用终端的命令行去做很容易,用图形界面往往很复杂,而且很多时候还会出现权限的问题,对于ubuntu的用户权限,现在的唯一感觉就是权限在 ...

  8. JDK+Eclipse+MyEclipse+tomcat的安装与配置

    以下我所使用的各软件版本为:JDK(1.6):eclipse(3.2.2):myEclipse(5.5.1GA):tomcat(5.5.12): 一.安装JDK: 下载完JDK(1.6)后双击进行安装 ...

  9. Gora快速入门

    概述 Gora是apache的一个开源项目. The Apache Gora open source framework provides an in-memory data model and pe ...

  10. Gora官方范例

    参考官方文档:http://gora.apache.org/current/tutorial.html 项目代码见:https://code.csdn.net/jediael_lu/mygoradem ...