Reinforcement Learning (R.L.)

① MDPs (Markov Decision Processes)

② Value Functions

③ Value Iteration

④ Policy Iteration

(both ③ and ④ are algorithms for solving R.L. problems)

Supervised Learning: we have the training set in which we were given sort of the right answer of every training example and it was the just a drop of the learning algorithms to replicate more of the right answers.

Unsupervised Learning: we had just a bunch of unlabeled data just the x's and it was the job in the learning alogrithm to discover so-called structure in the data and several algorithms like cluster analysis K-means, a mixture of all the sort PCA, ICA and so on.

Today we just talk about a different class of learning algorithms between supervised and unsupervised — R.L.

there's a helicopter experiment performed by Andrew Ng at Stanford University(you could see the video and the details of that experiment on the Internet), which is a unmanned helicopter controlld by R.L. algorithms.

It's different from Supervised Learning, because usually we actually do not konw

Machine Learning - Lecture 16的更多相关文章

  1. ML Lecture 0-1: Introduction of Machine Learning

    本博客是针对李宏毅教授在Youtube上上传的课程视频<ML Lecture 0-1: Introduction of Machine Learning>的学习笔记.在Github上也po ...

  2. Stanford CS229 Machine Learning by Andrew Ng

    CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...

  3. Machine Learning and Data Mining Lecture 1

    Machine Learning and Data Mining Lecture 1 1. The learning problem - Outline     1.1 Example of mach ...

  4. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计

    Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...

  5. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 10—Advice for applying machine learning 机器学习应用建议

    Lecture 10—Advice for applying machine learning 10.1 如何调试一个机器学习算法? 有多种方案: 1.获得更多训练数据:2.尝试更少特征:3.尝试更多 ...

  6. ML Lecture 0-2: Why we need to learn machine learning?

    在Github上也po了这个系列学习笔记(MachineLearningCourseNote),觉得写的不错的小伙伴欢迎来给项目点个赞哦~~ ML Lecture 0-2: Why we need t ...

  7. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习

    Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...

  8. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  9. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

随机推荐

  1. java保留有效数字

    DecimalFormat df=DecimalFormat("######0.0") double d = df.format(xx): 保留一位就是"######0. ...

  2. [HTML5] Level up -- Display

    HTML5 Input type: Traditionally presentational tags, the i, b, em, and strong tags have been given n ...

  3. 33c3-pwn350-tea

    TEA 感觉这个题目出得很不错.先运行程序了解基本功能,程序可以读取对系统上存在的文件的内容,如果文件不存在的话,直接退出. 使用IDA打开后,发现父进程通过clone api克隆出一个子进程,主要的 ...

  4. NET中级课--文件,流,序列化2

    1.流的类型体系: 基础流    装饰器流    包装器类    帮助类 2.               stream file~     memory~     network~ stream是个 ...

  5. NET基础课--对象的筛选和排序(NET之美)

    1.数据量不大的时候取出数据缓存于服务器,然后排序,筛选等基于缓存进行以提高效率. 排序或筛选的方法是使用集合类型提供的,如List<T>.sort()  List<T>.Fi ...

  6. 使用HttpClient发送GET请求

    HttpRequestMessage http_req_msg = new HttpRequestMessage(); http_req_msg.Method = HttpMethod.Get; ht ...

  7. (转载)Windows下手动完全卸载Oracle

    使用Oracle自带的Universal Installer卸载存在问题: 不干净,不完全,还有一些注册表残留,会影响到后来的安装. 所以,推荐使用手工卸载Oracle. 1.[win+R]-> ...

  8. 并行开发学习随笔1——plinq并行

    这两天在看园友的文章 <8天玩转并行开发——第三天 plinq的使用> 对里面的第一个实例亲手实践了一下,发现了一点有意思的事情. 测试环境:.net 4.5 64位(如果是32位的,测试 ...

  9. String.format Tutorial

    String format(String format, Object... args) The format specifiers for general, character, and numer ...

  10. struts2 0day漏洞

    描述 Apache Struts2 近日出现一个0day漏洞,该漏洞在修补CVE-2014-0050和2014-0094两个安全漏洞处理不当,分别可以导致服务器受到拒绝服务攻击和被执行恶意代码. 漏洞 ...