Reinforcement Learning (R.L.)

① MDPs (Markov Decision Processes)

② Value Functions

③ Value Iteration

④ Policy Iteration

(both ③ and ④ are algorithms for solving R.L. problems)

Supervised Learning: we have the training set in which we were given sort of the right answer of every training example and it was the just a drop of the learning algorithms to replicate more of the right answers.

Unsupervised Learning: we had just a bunch of unlabeled data just the x's and it was the job in the learning alogrithm to discover so-called structure in the data and several algorithms like cluster analysis K-means, a mixture of all the sort PCA, ICA and so on.

Today we just talk about a different class of learning algorithms between supervised and unsupervised — R.L.

there's a helicopter experiment performed by Andrew Ng at Stanford University(you could see the video and the details of that experiment on the Internet), which is a unmanned helicopter controlld by R.L. algorithms.

It's different from Supervised Learning, because usually we actually do not konw

Machine Learning - Lecture 16的更多相关文章

  1. ML Lecture 0-1: Introduction of Machine Learning

    本博客是针对李宏毅教授在Youtube上上传的课程视频<ML Lecture 0-1: Introduction of Machine Learning>的学习笔记.在Github上也po ...

  2. Stanford CS229 Machine Learning by Andrew Ng

    CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...

  3. Machine Learning and Data Mining Lecture 1

    Machine Learning and Data Mining Lecture 1 1. The learning problem - Outline     1.1 Example of mach ...

  4. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计

    Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...

  5. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 10—Advice for applying machine learning 机器学习应用建议

    Lecture 10—Advice for applying machine learning 10.1 如何调试一个机器学习算法? 有多种方案: 1.获得更多训练数据:2.尝试更少特征:3.尝试更多 ...

  6. ML Lecture 0-2: Why we need to learn machine learning?

    在Github上也po了这个系列学习笔记(MachineLearningCourseNote),觉得写的不错的小伙伴欢迎来给项目点个赞哦~~ ML Lecture 0-2: Why we need t ...

  7. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习

    Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...

  8. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  9. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

随机推荐

  1. PC-CSS-分隔线

    单个标签实现分隔线: 点此查看实例展示 .demo_line_01{ padding: 0 20px 0; margin: 20px 0; line-height: 1px; border-left: ...

  2. Gym Class(拓扑排序)

    Gym Class Time Limit: 6000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total ...

  3. 炉石传说__multiset

     炉石传说  Problem Description GG学长虽然并不打炉石传说,但是由于题面需要他便学会了打炉石传说.但是传统的炉石传说对于刚入门的GG学长来说有点复杂,所以他决定自己开发一个简化版 ...

  4. gitlab升级方法

    gitlab升级方法:国内网络环境推荐方法二方法一:官网的升级方式 (1)停止git服务 gitlab-ctl stop unicorn gitlab-ctl stop sidekiq gitlab- ...

  5. jquery于form正在使用submit问题,未解决

    $("#login_btn").click(function(){type为submit的button下 if($("#id_password").val(). ...

  6. TabBarItem图片大小改变

    在TabBarItem设计的时候不需要title只要image的时候,如何将image居中显示. tabBarItem.imageInsets = UIEdgeInsetsMake(6, 0, -6, ...

  7. Ubantu 命令

    进入窗口删除文件(所有文件都可以删除) gksudo nautilus 输入法问题 ibus-daemon -drx

  8. 鼠标滚轮(mousewheel)和DOMMouseScroll事件

    IE6.0首先实现了mousewheel事件.此后,Opera.Chrome和Safari也都实现了这个事件.当用户通过鼠标滚轮与页面交互.在垂直方向上滚动页面时(无论向下还是向上),就会触发mous ...

  9. 软件测试作业三 尝试使用JUnit

    写一个判断三角形种类的代码,对其进行测试. 判断三角形代码: package 测试1; public class sjx { public String f(int a,int b,int c) { ...

  10. 图的广度、深度优先遍历 C语言

    以下是老师作为数据结构课的作业的要求,没有什么实际用处和可以探讨和总结的的地方,所以简单代码直接展示. 宽度优先遍历: #include<cstdio> #include<iostr ...