Reinforcement Learning (R.L.)

① MDPs (Markov Decision Processes)

② Value Functions

③ Value Iteration

④ Policy Iteration

(both ③ and ④ are algorithms for solving R.L. problems)

Supervised Learning: we have the training set in which we were given sort of the right answer of every training example and it was the just a drop of the learning algorithms to replicate more of the right answers.

Unsupervised Learning: we had just a bunch of unlabeled data just the x's and it was the job in the learning alogrithm to discover so-called structure in the data and several algorithms like cluster analysis K-means, a mixture of all the sort PCA, ICA and so on.

Today we just talk about a different class of learning algorithms between supervised and unsupervised — R.L.

there's a helicopter experiment performed by Andrew Ng at Stanford University(you could see the video and the details of that experiment on the Internet), which is a unmanned helicopter controlld by R.L. algorithms.

It's different from Supervised Learning, because usually we actually do not konw

Machine Learning - Lecture 16的更多相关文章

  1. ML Lecture 0-1: Introduction of Machine Learning

    本博客是针对李宏毅教授在Youtube上上传的课程视频<ML Lecture 0-1: Introduction of Machine Learning>的学习笔记.在Github上也po ...

  2. Stanford CS229 Machine Learning by Andrew Ng

    CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...

  3. Machine Learning and Data Mining Lecture 1

    Machine Learning and Data Mining Lecture 1 1. The learning problem - Outline     1.1 Example of mach ...

  4. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计

    Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...

  5. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 10—Advice for applying machine learning 机器学习应用建议

    Lecture 10—Advice for applying machine learning 10.1 如何调试一个机器学习算法? 有多种方案: 1.获得更多训练数据:2.尝试更少特征:3.尝试更多 ...

  6. ML Lecture 0-2: Why we need to learn machine learning?

    在Github上也po了这个系列学习笔记(MachineLearningCourseNote),觉得写的不错的小伙伴欢迎来给项目点个赞哦~~ ML Lecture 0-2: Why we need t ...

  7. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习

    Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...

  8. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  9. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

随机推荐

  1. sudo nopasswd

    preface,不问头条,但汝读荐,诚意满满的!

  2. nyoj 104 最大和 (二维最大字串和)

    描述 给定一个由整数组成二维矩阵(r*c),现在需要找出它的一个子矩阵,使得这个子矩阵内的所有元素之和最大,并把这个子矩阵称为最大子矩阵. 例子: - - - - - - - 其最大子矩阵为: - - ...

  3. [[UIScreen mainScreen] scale]详解

    [[UIScreen mainScreen] scale]详解 当屏幕分别为640x940时[[UIScreen mainScreen] scale]=2.0 当屏幕分别为320x480时[[UISc ...

  4. PC--CSS命名

    头:header内 容:container尾:footer导航:nav侧栏:sidebar栏目:column页 面外围控制整体布局宽度:wrapper左右中:left right center登录条: ...

  5. SpringMVC的@ResponseBody返回JSON,中文乱码问题的解决.

    SpringMVC的@ResponseBody,返回json,如果有中文显示乱码的解决办法. 在SpringMVC的配置文件中 <bean class="org.springframe ...

  6. 高性能WEB开发(6) - web性能測试工具推荐

    WEB性能測试工具主要分为三种.一种是測试页面资源载入速度的,一种是測试页面载入完成后页面呈现.JS操作速度的,另一种是整体上对页面进行评价分析,以下分别对这些工具进行介绍,假设谁有更好的工具也请一起 ...

  7. [HeadFirst-HTMLCSS学习笔记][第六章严格的HTML]

    远古 古老的html 4.01和XHTML 1.1 页面 必须用Doctype挑明,再html元素上面 html 4.01 <!DOCTYPE html PUBLIC "-//W3C/ ...

  8. System.AccessViolationException: 尝试读取或写入受保护的内存 解决办法

    netsh winsock reset   --运行此命令解决 错误描述: 之前装的vs2010后 再又安装了vs2013 ,运行之前的vs2010项目 就出现以上错误 错误应用程序名称: w3wp. ...

  9. 代码先行-log4Net初体验

    1.安装 从http://logging.apache.org/log4net/download_log4net.cgi下载编译好的log4Net包并解压. 找到 bin\net\4.0\releas ...

  10. UVA 11754 Code Feat (枚举,中国剩余定理)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud C Code Feat   The government hackers at C ...