Reinforcement Learning (R.L.)

① MDPs (Markov Decision Processes)

② Value Functions

③ Value Iteration

④ Policy Iteration

(both ③ and ④ are algorithms for solving R.L. problems)

Supervised Learning: we have the training set in which we were given sort of the right answer of every training example and it was the just a drop of the learning algorithms to replicate more of the right answers.

Unsupervised Learning: we had just a bunch of unlabeled data just the x's and it was the job in the learning alogrithm to discover so-called structure in the data and several algorithms like cluster analysis K-means, a mixture of all the sort PCA, ICA and so on.

Today we just talk about a different class of learning algorithms between supervised and unsupervised — R.L.

there's a helicopter experiment performed by Andrew Ng at Stanford University(you could see the video and the details of that experiment on the Internet), which is a unmanned helicopter controlld by R.L. algorithms.

It's different from Supervised Learning, because usually we actually do not konw

Machine Learning - Lecture 16的更多相关文章

  1. ML Lecture 0-1: Introduction of Machine Learning

    本博客是针对李宏毅教授在Youtube上上传的课程视频<ML Lecture 0-1: Introduction of Machine Learning>的学习笔记.在Github上也po ...

  2. Stanford CS229 Machine Learning by Andrew Ng

    CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...

  3. Machine Learning and Data Mining Lecture 1

    Machine Learning and Data Mining Lecture 1 1. The learning problem - Outline     1.1 Example of mach ...

  4. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计

    Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...

  5. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 10—Advice for applying machine learning 机器学习应用建议

    Lecture 10—Advice for applying machine learning 10.1 如何调试一个机器学习算法? 有多种方案: 1.获得更多训练数据:2.尝试更少特征:3.尝试更多 ...

  6. ML Lecture 0-2: Why we need to learn machine learning?

    在Github上也po了这个系列学习笔记(MachineLearningCourseNote),觉得写的不错的小伙伴欢迎来给项目点个赞哦~~ ML Lecture 0-2: Why we need t ...

  7. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习

    Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...

  8. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  9. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

随机推荐

  1. pyqt listwidget下面创建多张图片

    def Photosvisi(self): i=0 self.lists.setIconSize(QtCore.QSize(70,70))#设置显示图片大小 self.lists.setResizeM ...

  2. Apache POI组件操作Excel,制作报表(二)

    本文接上一篇继续探究POI组件的使用.     现在来看看Excel的基本设置问题,以2007为例,先从工作簿来说,设置列宽,因为生成表格列应该固定,而行是遍历生成的,所以可以在工作簿级别来设置列宽, ...

  3. java与.net比较学习系列(3) 基本数据类型和类型转换

    在Java中,数据类型分为两类,一类是基本数据类型,另外一类是引用类型. 而在C#中,数据类型分为三类,分别是基元类型,值类型和引用类型.其中基元类型是.net framework框架中预定义的类型, ...

  4. MongoDB 数据库安装

    首先在官网上下载数据库:官网上提供了两种形式的数据库,一种是免安装版的,一种是安装版的.这点跟apache的tomcat类似,安装版的有可视化的界面对服务进行启动和关闭,可是还是比較喜欢免安装的.不解 ...

  5. Android硬件抽象层(HAL)概要介绍和学习计划

    文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/6567257 Android的硬件抽象层,简单来 ...

  6. Linux各个目录的作用

      /binbin是binary的缩写.这个目录沿袭了UNIX系统的结构,存放着使用者最经常使用的命令.例如cp.ls.cat,等等./boot这里存放的是启动Linux时使用的一些核心文件./dev ...

  7. java获取文件大小

    1.使用File的length()方法获取.这个方法获取的字节数,由于返回的是Long类型所以能返回的最大值是Long.MAX_VALUE File file = new File( "D: ...

  8. win下 git gui 使用教程

    现在很多都有git来托管项目或者来查找资料,但是看起来操作不是很方便,现在由于win下可以直接使用git gui,让使用git变得方便,当然这只是针对日常简单的使用,如果想详细的使用,可以去参考廖学峰 ...

  9. 一些基础的.net用法

    一.using 用法 using 别名设置 using 别名 = System.web 当两个不同的namespace里有同名的class时.可以用 using aclass = namespace1 ...

  10. PHP session 跨子域问题总结

    Session主要分两部分: 一个是Session数据,该数据默认情况下是存放在服务器的tmp文件下的,是以文件形式存在 另一个是标志着Session数据的Session Id,Session ID, ...