Machine Learning - Lecture 16
Reinforcement Learning (R.L.)
① MDPs (Markov Decision Processes)
② Value Functions
③ Value Iteration
④ Policy Iteration
(both ③ and ④ are algorithms for solving R.L. problems)
Supervised Learning: we have the training set in which we were given sort of the right answer of every training example and it was the just a drop of the learning algorithms to replicate more of the right answers.
Unsupervised Learning: we had just a bunch of unlabeled data just the x's and it was the job in the learning alogrithm to discover so-called structure in the data and several algorithms like cluster analysis K-means, a mixture of all the sort PCA, ICA and so on.
Today we just talk about a different class of learning algorithms between supervised and unsupervised — R.L.
there's a helicopter experiment performed by Andrew Ng at Stanford University(you could see the video and the details of that experiment on the Internet), which is a unmanned helicopter controlld by R.L. algorithms.
It's different from Supervised Learning, because usually we actually do not konw
Machine Learning - Lecture 16的更多相关文章
- ML Lecture 0-1: Introduction of Machine Learning
		本博客是针对李宏毅教授在Youtube上上传的课程视频<ML Lecture 0-1: Introduction of Machine Learning>的学习笔记.在Github上也po ... 
- Stanford CS229 Machine Learning by Andrew Ng
		CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ... 
- Machine Learning and Data Mining Lecture 1
		Machine Learning and Data Mining Lecture 1 1. The learning problem - Outline 1.1 Example of mach ... 
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计
		Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ... 
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 10—Advice for applying machine learning 机器学习应用建议
		Lecture 10—Advice for applying machine learning 10.1 如何调试一个机器学习算法? 有多种方案: 1.获得更多训练数据:2.尝试更少特征:3.尝试更多 ... 
- ML Lecture 0-2: Why we need to learn machine learning?
		在Github上也po了这个系列学习笔记(MachineLearningCourseNote),觉得写的不错的小伙伴欢迎来给项目点个赞哦~~ ML Lecture 0-2: Why we need t ... 
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习
		Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ... 
- 【机器学习Machine Learning】资料大全
		昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ... 
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
		转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ... 
随机推荐
- pyqt listwidget下面创建多张图片
			def Photosvisi(self): i=0 self.lists.setIconSize(QtCore.QSize(70,70))#设置显示图片大小 self.lists.setResizeM ... 
- Apache POI组件操作Excel,制作报表(二)
			本文接上一篇继续探究POI组件的使用. 现在来看看Excel的基本设置问题,以2007为例,先从工作簿来说,设置列宽,因为生成表格列应该固定,而行是遍历生成的,所以可以在工作簿级别来设置列宽, ... 
- java与.net比较学习系列(3) 基本数据类型和类型转换
			在Java中,数据类型分为两类,一类是基本数据类型,另外一类是引用类型. 而在C#中,数据类型分为三类,分别是基元类型,值类型和引用类型.其中基元类型是.net framework框架中预定义的类型, ... 
- MongoDB 数据库安装
			首先在官网上下载数据库:官网上提供了两种形式的数据库,一种是免安装版的,一种是安装版的.这点跟apache的tomcat类似,安装版的有可视化的界面对服务进行启动和关闭,可是还是比較喜欢免安装的.不解 ... 
- Android硬件抽象层(HAL)概要介绍和学习计划
			文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/6567257 Android的硬件抽象层,简单来 ... 
- Linux各个目录的作用
			/binbin是binary的缩写.这个目录沿袭了UNIX系统的结构,存放着使用者最经常使用的命令.例如cp.ls.cat,等等./boot这里存放的是启动Linux时使用的一些核心文件./dev ... 
- java获取文件大小
			1.使用File的length()方法获取.这个方法获取的字节数,由于返回的是Long类型所以能返回的最大值是Long.MAX_VALUE File file = new File( "D: ... 
- win下 git gui 使用教程
			现在很多都有git来托管项目或者来查找资料,但是看起来操作不是很方便,现在由于win下可以直接使用git gui,让使用git变得方便,当然这只是针对日常简单的使用,如果想详细的使用,可以去参考廖学峰 ... 
- 一些基础的.net用法
			一.using 用法 using 别名设置 using 别名 = System.web 当两个不同的namespace里有同名的class时.可以用 using aclass = namespace1 ... 
- PHP session 跨子域问题总结
			Session主要分两部分: 一个是Session数据,该数据默认情况下是存放在服务器的tmp文件下的,是以文件形式存在 另一个是标志着Session数据的Session Id,Session ID, ... 
