Machine Learning - Lecture 16
Reinforcement Learning (R.L.)
① MDPs (Markov Decision Processes)
② Value Functions
③ Value Iteration
④ Policy Iteration
(both ③ and ④ are algorithms for solving R.L. problems)
Supervised Learning: we have the training set in which we were given sort of the right answer of every training example and it was the just a drop of the learning algorithms to replicate more of the right answers.
Unsupervised Learning: we had just a bunch of unlabeled data just the x's and it was the job in the learning alogrithm to discover so-called structure in the data and several algorithms like cluster analysis K-means, a mixture of all the sort PCA, ICA and so on.
Today we just talk about a different class of learning algorithms between supervised and unsupervised — R.L.
there's a helicopter experiment performed by Andrew Ng at Stanford University(you could see the video and the details of that experiment on the Internet), which is a unmanned helicopter controlld by R.L. algorithms.
It's different from Supervised Learning, because usually we actually do not konw
Machine Learning - Lecture 16的更多相关文章
- ML Lecture 0-1: Introduction of Machine Learning
本博客是针对李宏毅教授在Youtube上上传的课程视频<ML Lecture 0-1: Introduction of Machine Learning>的学习笔记.在Github上也po ...
- Stanford CS229 Machine Learning by Andrew Ng
CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...
- Machine Learning and Data Mining Lecture 1
Machine Learning and Data Mining Lecture 1 1. The learning problem - Outline 1.1 Example of mach ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计
Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 10—Advice for applying machine learning 机器学习应用建议
Lecture 10—Advice for applying machine learning 10.1 如何调试一个机器学习算法? 有多种方案: 1.获得更多训练数据:2.尝试更少特征:3.尝试更多 ...
- ML Lecture 0-2: Why we need to learn machine learning?
在Github上也po了这个系列学习笔记(MachineLearningCourseNote),觉得写的不错的小伙伴欢迎来给项目点个赞哦~~ ML Lecture 0-2: Why we need t ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习
Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
随机推荐
- sudo nopasswd
preface,不问头条,但汝读荐,诚意满满的!
- nyoj 104 最大和 (二维最大字串和)
描述 给定一个由整数组成二维矩阵(r*c),现在需要找出它的一个子矩阵,使得这个子矩阵内的所有元素之和最大,并把这个子矩阵称为最大子矩阵. 例子: - - - - - - - 其最大子矩阵为: - - ...
- [[UIScreen mainScreen] scale]详解
[[UIScreen mainScreen] scale]详解 当屏幕分别为640x940时[[UIScreen mainScreen] scale]=2.0 当屏幕分别为320x480时[[UISc ...
- PC--CSS命名
头:header内 容:container尾:footer导航:nav侧栏:sidebar栏目:column页 面外围控制整体布局宽度:wrapper左右中:left right center登录条: ...
- SpringMVC的@ResponseBody返回JSON,中文乱码问题的解决.
SpringMVC的@ResponseBody,返回json,如果有中文显示乱码的解决办法. 在SpringMVC的配置文件中 <bean class="org.springframe ...
- 高性能WEB开发(6) - web性能測试工具推荐
WEB性能測试工具主要分为三种.一种是測试页面资源载入速度的,一种是測试页面载入完成后页面呈现.JS操作速度的,另一种是整体上对页面进行评价分析,以下分别对这些工具进行介绍,假设谁有更好的工具也请一起 ...
- [HeadFirst-HTMLCSS学习笔记][第六章严格的HTML]
远古 古老的html 4.01和XHTML 1.1 页面 必须用Doctype挑明,再html元素上面 html 4.01 <!DOCTYPE html PUBLIC "-//W3C/ ...
- System.AccessViolationException: 尝试读取或写入受保护的内存 解决办法
netsh winsock reset --运行此命令解决 错误描述: 之前装的vs2010后 再又安装了vs2013 ,运行之前的vs2010项目 就出现以上错误 错误应用程序名称: w3wp. ...
- 代码先行-log4Net初体验
1.安装 从http://logging.apache.org/log4net/download_log4net.cgi下载编译好的log4Net包并解压. 找到 bin\net\4.0\releas ...
- UVA 11754 Code Feat (枚举,中国剩余定理)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud C Code Feat The government hackers at C ...