Machine Learning - Lecture 16
Reinforcement Learning (R.L.)
① MDPs (Markov Decision Processes)
② Value Functions
③ Value Iteration
④ Policy Iteration
(both ③ and ④ are algorithms for solving R.L. problems)
Supervised Learning: we have the training set in which we were given sort of the right answer of every training example and it was the just a drop of the learning algorithms to replicate more of the right answers.
Unsupervised Learning: we had just a bunch of unlabeled data just the x's and it was the job in the learning alogrithm to discover so-called structure in the data and several algorithms like cluster analysis K-means, a mixture of all the sort PCA, ICA and so on.
Today we just talk about a different class of learning algorithms between supervised and unsupervised — R.L.
there's a helicopter experiment performed by Andrew Ng at Stanford University(you could see the video and the details of that experiment on the Internet), which is a unmanned helicopter controlld by R.L. algorithms.
It's different from Supervised Learning, because usually we actually do not konw
Machine Learning - Lecture 16的更多相关文章
- ML Lecture 0-1: Introduction of Machine Learning
本博客是针对李宏毅教授在Youtube上上传的课程视频<ML Lecture 0-1: Introduction of Machine Learning>的学习笔记.在Github上也po ...
- Stanford CS229 Machine Learning by Andrew Ng
CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...
- Machine Learning and Data Mining Lecture 1
Machine Learning and Data Mining Lecture 1 1. The learning problem - Outline 1.1 Example of mach ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计
Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 10—Advice for applying machine learning 机器学习应用建议
Lecture 10—Advice for applying machine learning 10.1 如何调试一个机器学习算法? 有多种方案: 1.获得更多训练数据:2.尝试更少特征:3.尝试更多 ...
- ML Lecture 0-2: Why we need to learn machine learning?
在Github上也po了这个系列学习笔记(MachineLearningCourseNote),觉得写的不错的小伙伴欢迎来给项目点个赞哦~~ ML Lecture 0-2: Why we need t ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习
Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
随机推荐
- java保留有效数字
DecimalFormat df=DecimalFormat("######0.0") double d = df.format(xx): 保留一位就是"######0. ...
- [HTML5] Level up -- Display
HTML5 Input type: Traditionally presentational tags, the i, b, em, and strong tags have been given n ...
- 33c3-pwn350-tea
TEA 感觉这个题目出得很不错.先运行程序了解基本功能,程序可以读取对系统上存在的文件的内容,如果文件不存在的话,直接退出. 使用IDA打开后,发现父进程通过clone api克隆出一个子进程,主要的 ...
- NET中级课--文件,流,序列化2
1.流的类型体系: 基础流 装饰器流 包装器类 帮助类 2. stream file~ memory~ network~ stream是个 ...
- NET基础课--对象的筛选和排序(NET之美)
1.数据量不大的时候取出数据缓存于服务器,然后排序,筛选等基于缓存进行以提高效率. 排序或筛选的方法是使用集合类型提供的,如List<T>.sort() List<T>.Fi ...
- 使用HttpClient发送GET请求
HttpRequestMessage http_req_msg = new HttpRequestMessage(); http_req_msg.Method = HttpMethod.Get; ht ...
- (转载)Windows下手动完全卸载Oracle
使用Oracle自带的Universal Installer卸载存在问题: 不干净,不完全,还有一些注册表残留,会影响到后来的安装. 所以,推荐使用手工卸载Oracle. 1.[win+R]-> ...
- 并行开发学习随笔1——plinq并行
这两天在看园友的文章 <8天玩转并行开发——第三天 plinq的使用> 对里面的第一个实例亲手实践了一下,发现了一点有意思的事情. 测试环境:.net 4.5 64位(如果是32位的,测试 ...
- String.format Tutorial
String format(String format, Object... args) The format specifiers for general, character, and numer ...
- struts2 0day漏洞
描述 Apache Struts2 近日出现一个0day漏洞,该漏洞在修补CVE-2014-0050和2014-0094两个安全漏洞处理不当,分别可以导致服务器受到拒绝服务攻击和被执行恶意代码. 漏洞 ...