Spark源码学习1
转自:http://www.cnblogs.com/hseagle/p/3664933.html
一、基本概念(Basic Concepts)
RDD - resillient distributed dataset 弹性分布式数据集
Operation - 作用于RDD的各种操作分为transformation和action
Job - 作业,一个JOB包含多个RDD及作用于相应RDD上的各种operation
Stage - 一个作业分为多个阶段
Partition - 数据分区, 一个RDD中的数据可以分成多个不同的区
DAG - Directed Acycle graph, 有向无环图,反应RDD之间的依赖关系
Narrow dependency - 窄依赖,子RDD依赖于父RDD中固定的data partition
Wide Dependency - 宽依赖,子RDD对父RDD中的所有data partition都有依赖
Caching Managenment -- 缓存管理,对RDD的中间计算结果进行缓存管理以加快整体的处理速度
二、编程模型(Programming Model)
RDD是只读的数据分区集合,注意是数据集,作用于RDD上的Operation分为transformantion和action。 经Transformation处理之后,数据集中的内容会发生更改,由数据集A转换成为数据集B;而经Action处理之后,数据集中的内容会被归约为一个具体的数值,只有当RDD上有action时,该RDD及其父RDD上的所有operation才会被提交到cluster中真正的被执行。从代码到动态运行,涉及到的组件如下图所示。
演示代码
val sc = new SparkContext("Spark://...", "MyJob", home, jars)
val file = sc.textFile("hdfs://...")
val errors = file.filter(_.contains("ERROR"))
errors.cache()
errors.count()
三、运行态(Runtime view)
不管什么样的静态模型,其在动态运行的时候无外乎由进程,线程组成。用Spark的术语来说,static view称为dataset view,而dynamic view称为parition view. 关系如图所示
在Spark中的task可以对应于线程,worker是一个个的进程,worker由driver来进行管理。那么问题来了,这一个个的task是如何从RDD演变过来的呢?下节将详细回答这个问题。
四、部署(Deployment view)
当有Action作用于某RDD时,该action会作为一个job被提交。在提交的过程中,DAGScheduler模块介入运算,计算RDD之间的依赖关系。RDD之间的依赖关系就形成了DAG。每一个JOB被分为多个stage,划分stage的一个主要依据是当前计算因子的输入是否是确定的,如果是则将其分在同一个stage,避免多个stage之间的消息传递开销。当stage被提交之后,由taskscheduler来根据stage来计算所需要的task,并将task提交到对应的worker.Spark支持以下几种部署模式1)standalone 2)Mesos 3) yarn. 这些部署模式将作为taskscheduler的初始化入参。
五、RDD接口(RDD Interface)
RDD由以下几个主要部分组成
- partitions -- partition集合,一个RDD中有多少data partition
- dependencies -- RDD依赖关系
- compute(parition) -- 对于给定的数据集,需要作哪些计算
- preferredLocations -- 对于data partition的位置偏好
- partitioner -- 对于计算出来的数据结果如何分发
六、缓存机制(caching)
RDD的中间计算结果可以被缓存起来,缓存先选Memory,如果Memory不够的话,将会被写入到磁盘中,根据LRU(last-recent update)来决定哪先内容继续保存在内存,哪些保存到磁盘。
七、容错性(Fault-tolerant)
从最初始的RDD到衍生出来的最后一个RDD,中间要经过一系列的处理。那么如何处理中间环节出现错误的场景呢?Spark提供的解决方案是只对失效的data partition进行事件重演,而无须对整个数据全集进行事件重演,这样可以大大加快场景恢复的开销。RDD又是如何知道自己的data partition的number该是多少?如果是hdfs文件,那么hdfs文件的block将会成为一个重要的计算依据。
八、集群管理(cluster management)
task运行在cluster之上,除了spark自身提供的standalone部署模式之外,spark还内在支持yarn和mesos.Yarn来负责计算资源的调度和监控,根据监控结果来重启失效的task或者是重新distributed task一旦有新的node加入cluster的话。
Spark源码学习1的更多相关文章
- Spark源码学习1.2——TaskSchedulerImpl.scala
许久没有写博客了,没有太多时间,最近陆续将Spark源码的一些阅读笔记传上,接下来要修改Spark源码了. 这个类继承于TaskScheduler类,重载了TaskScheduler中的大部分方法,是 ...
- Spark源码学习1.1——DAGScheduler.scala
本文以Spark1.1.0版本为基础. 经过前一段时间的学习,基本上能够对Spark的工作流程有一个了解,但是具体的细节还是需要阅读源码,而且后续的科研过程中也肯定要修改源码的,所以最近开始Spark ...
- Spark源码学习2
转自:http://www.cnblogs.com/hseagle/p/3673123.html 在源码阅读时,需要重点把握以下两大主线. 静态view 即 RDD, transformation a ...
- spark源码学习-withScope
withScope是最近的发现版中新增加的一个模块,它是用来做DAG可视化的(DAG visualization on SparkUI) 以前的sparkUI中只有stage的执行情况,也就是说我们 ...
- Spark源码学习1.6——Executor.scala
Executor.scala 一.Executor类 首先判断本地性,获取slaves的host name(不是IP或者host: port),匹配运行环境为集群或者本地.如果不是本地执行,需要启动一 ...
- Spark源码学习1.5——BlockManager.scala
一.BlockResult类 该类用来表示返回的匹配的block及其相关的参数.共有三个参数: data:Iterator [Any]. readMethod: DataReadMethod.Valu ...
- Spark源码学习1.4——MapOutputTracker.scala
相关类:MapOutputTrackerMessage,GetMapOutputStatuses extends MapPutputTrackerMessage,StopMapOutputTracke ...
- Spark源码学习3
转自:http://www.cnblogs.com/hseagle/p/3673132.html 一.概要 本篇主要阐述在TaskRunner中执行的task其业务逻辑是如何被调用到的,另外试图讲清楚 ...
- Spark源码学习1.8——ShuffleBlockManager.scala
shuffleBlockManager继承于Logging,参数为blockManager和shuffleManager.shuffle文件有三个特性:shuffleId,整个shuffle stag ...
随机推荐
- poj 2728 Desert King(最优比例生成树)
#include <iostream> #include <cstdio> #include <cmath> #include <cstdlib> #i ...
- Linux 下编译Android-VLC开源播放器详解(附源码下载)
这两天需要做音视频播放相关的东西,所以重新找了目前android下的解码库.Android自带的解码库支持不全,因此很多第三方播放器都是自带解码器,绝大部分都是使用FFMpeg作为解码库.我11年的时 ...
- Gulp思维——Gulp高级技巧
本文翻译自Getting gulpy -- Advanced tips for using gulp.js 感受过gulp.js带来的兴奋过后,你需要的不仅仅是它的光鲜,而是切切实实的实例.这篇文章讨 ...
- Quartz 2D - 图形上下文(Graphics Contexts)
一个Graphics Context表示一个绘制目标.它包含绘制系统用于完成绘制指令的绘制参数和设备相关信息.Graphics Context定义了基本的绘制属性,如颜色.裁减区域.线条宽度和样式信息 ...
- trie tree(字典树)
hihocoder题目(http://hihocoder.com/problemset):#1014 trie树 #include <iostream> using namespace s ...
- SSDT表详解
SSDT(system service dispatch table) 系统服务分派表 SSPT(system service parameter table) 系统服务参数表 #pragma pac ...
- < meta > 元素 概要
< meta > 元素 概要 标签提供关于HTML文档的元数据.元数据不会显示在页面上,但是对于机器是可读的.它可用于浏览器(如何显示内容或重新加载页面),搜索引擎(关键词),或其他 we ...
- 怎样在Eclipse中使用debug模式调试程序
最基本的操作是: 1, 首先在一个java文件中设断点,然后运行,当程序走到断点处就会转到debug视图下, 2, F5键与F6键均为单步调试,F5是step into,也就是进入本行代码中执行,F6 ...
- 3D空间坐标系转换复习
模型坐标系:ModelSpace 即模型本身为中心 模型本身自己 世界坐标系:WorldSpace 世界坐标系 整个世界 视角坐标系: ViewSpace 眼睛看到的范 ...
- getchar()与EOF
大师级经典的著作,要字斟句酌的去读,去理解.以前在看K&R的The C Programming Language(Second Edition)中第1.5节的字符输入/输出,很迷惑getcha ...