题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1190

神题。。。。。。

F[i][j]表示容量为j*2^i+W第i-1位到第0位的最大价值,

其实就是 j*2^i+W的第i-1位*2^(i-1)+W的第i-2位*2^(i-2)+......+W的第0位*2^0

注意这里j的取值为0...W>>i。

我们在读入时在b相同的宝石之间做一个背包,但是注意这时F[i][j]的容量为 j*2^i,不是j*2^i+W第i-1位到第0位。

然后我们很容易得到转移方程f[i][j]=max(f[i][j-k]+F[i-1][2*k+W的第i-1位])(0<=k<=j)

我们枚举j的时候是倒着来的,所有f[i][j-k]的容量是(j-k)*2^i。

这时候f[i][j]的容量为j*2^i+W第i-1位到第0位,f[i][j-k]的容量为(j-k)*2^i,相减得:

j*2^i+W第i-1位到第0位

-(j-k)*2^i

=2k*2^(i-1)+W的第i-1位*2^(i-1)+W的第i-2位*2^(i-2)+......+W的第0位*2^0

=(2k+W的第i-1位)*2^(i-1)+W的第i-2位*2^(i-2)+......+W的第0位*2^0

这个是F[i-1][2*k+W的第i-1位]的容量。

好神奇。

这样就成功解决了W这个上限的问题。


感觉这种方法在数位计数的问题中大有用处。

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<fstream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<utility>
#include<set>
#include<bitset>
#include<vector>
#include<functional>
#include<deque>
#include<cctype>
#include<climits>
#include<complex>
//#include<bits/stdc++.h>适用于CF,UOJ,但不适用于poj using namespace std; typedef long long LL;
typedef double DB;
typedef pair<int,int> PII;
typedef complex<DB> CP; #define mmst(a,v) memset(a,v,sizeof(a))
#define mmcy(a,b) memcpy(a,b,sizeof(a))
#define re(i,a,b) for(i=a;i<=b;i++)
#define red(i,a,b) for(i=a;i>=b;i--)
#define fi first
#define se second
#define m_p(a,b) make_pair(a,b)
#define SF scanf
#define PF printf
#define two(k) (1<<(k)) template<class T>inline T sqr(T x){return x*x;}
template<class T>inline void upmin(T &t,T tmp){if(t>tmp)t=tmp;}
template<class T>inline void upmax(T &t,T tmp){if(t<tmp)t=tmp;} const DB EPS=1e-;
inline int sgn(DB x){if(abs(x)<EPS)return ;return(x>)?:-;}
const DB Pi=acos(-1.0); inline int gint()
{
int res=;bool neg=;char z;
for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
if(z==EOF)return ;
if(z=='-'){neg=;z=getchar();}
for(;z!=EOF && isdigit(z);res=res*+z-'',z=getchar());
return (neg)?-res:res;
}
inline LL gll()
{
LL res=;bool neg=;char z;
for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
if(z==EOF)return ;
if(z=='-'){neg=;z=getchar();}
for(;z!=EOF && isdigit(z);res=res*+z-'',z=getchar());
return (neg)?-res:res;
} const int maxN=; int N,W;
int F[][]; int main()
{
freopen("bzoj1190.in","r",stdin);
freopen("bzoj1190.out","w",stdout);
int i,j,k;
while(SF("%d%d\n",&N,&W),N>)
{
mmst(F,);
re(i,,N)
{
int a=gint(),b=,val=gint();
while(~a&){a>>=;b++;}
red(j,,a)upmax(F[b][j],F[b][j-a]+val);
}
re(i,,)re(j,,)upmax(F[i][j],F[i][j-]);
for(i=;i<= && (<<i)<=W;i++)
for(j=min(,W>>i);j>=;j--)
for(k=;k<=j;k++) upmax(F[i][j],F[i][j-k]+F[i-][min(k+k+((W>>i-)&),)]);
PF("%d\n",F[i-][]);
}
return ;
}

bzoj1190的更多相关文章

  1. 【题解】 bzoj1190: [HNOI2007]梦幻岛宝珠 (动态规划)

    bzoj1190,懒得复制,戳我戳我 Solution: 这道题其实是一个背包(分组背包),但是由于数字比较大,就要重新构造dp式子.啃了三天才懂. \(dp[i][j]\)表示背包容积为\(j*2^ ...

  2. 【BZOJ1190】[HNOI2007]梦幻岛宝珠 分层背包DP

    [BZOJ1190][HNOI2007]梦幻岛宝珠 Description 给你N颗宝石,每颗宝石都有重量和价值.要你从这些宝石中选取一些宝石,保证总重量不超过W,且总价值最大为,并输出最大的总价值. ...

  3. BZOJ1190[HNOI2007]梦幻岛宝石

    Description 给你N颗宝石,每颗宝石都有重量和价值.要你从这些宝石中选取一些宝石,保证总重量不超过W,且总价值最大为,并输出最大的总价值.数据范围:N<=100;W<=2^30, ...

  4. luogu3188/bzoj1190 梦幻岛宝珠 (分层背包dp)

    他都告诉你能拆了 那就拆呗.把每个重量拆成$a*2^b$的形式 然后对于每个不同的b,先分开做30个背包 再设f[i][j]表示b<=i的物品中 容量为$ j*2^i+W\&((1< ...

  5. bzoj1190 [HNOI2007]梦幻岛宝珠

    传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1190 [题解] 首先,我们把所有物品都分解成$a\times 2^b$的形式,然后把物品按 ...

  6. bzoj1190 [HNOI2007]梦幻岛宝珠 动态规划

    给你N颗宝石,每颗宝石都有重量和价值.要你从这些宝石中选取一些宝石,保证总重量不超过W,且总价值最大为,并输出最大的总价值.数据范围:N<=100;W<=2^30,并且保证每颗宝石的重量符 ...

  7. bzoj1190 [HNOI2007]梦幻岛宝珠 背包

    题目 https://lydsy.com/JudgeOnline/problem.php?id=1190 题解 好神仙的一道题啊. 既然 \(w_i = a_i\cdot 2^{b_i}\),那么不妨 ...

  8. [bzoj1190]梦幻岛宝珠

    根据$2^b$分组,组内处理出g[i][j]表示当容量为$j\cdot 2^{i}$且只能选b=i时最大价值,再组间dp用f[i][j]表示当容量为$j\cdot 2^{i}+(w\&(2^{ ...

  9. 2017/10 冲刺NOIP集训记录:暁の水平线に胜利を刻むのです!

    前几次集训都没有记录每天的点滴……感觉缺失了很多反思的机会. 这次就从今天开始吧!不能懈怠,稳步前进! 2017/10/1 今天上午进行了集训的第一次考试…… 但是这次考试似乎是近几次我考得最渣的一次 ...

随机推荐

  1. C++与lua交互

    项目开发的脚本层用的是Lua,引擎用的是C++.但是经理不给开放引擎层的代码.刚好最近项目空闲,安排了学习C++跟Lua的通信. 一.C++与Lua数据交互 数据交互主要是通过C API来实现 首先, ...

  2. 创建多模块maven项目

    有两种方式: 1,new -->maven project-->maven-archetype-quickstart 建完多个独立的project后,手动修改pom文件的packing类型 ...

  3. shell中timeout实现

    第一种 function timeout() { waitsec=$SLEEP_TIME ( $* ) & pid=$! ( sleep $waitsec && kill -H ...

  4. 关于IE8导航串行的问题

    1.概述: 作为一个前端人员,多浏览器兼容是必须必备的技能,现在一般要求是兼容IE8及以上,如果兼容IE6的话,会麻烦一些,这里介绍的是在IE8状态下我们导航条错位的问题. 2.导航错位代码 < ...

  5. 设计模式16---设计模式之组合模式(Composite)(行为型)

    1.场景模拟 使用软件模拟大树的根节点和树枝节点和叶子节点 抽象为两类,容器节点和叶子节点 2.不用模式的解决方案 package demo14.composite.example1; import ...

  6. 贪心-poj-3040-Allowance

    题目链接: http://poj.org/problem?id=3040 题目意思: 有n种(n<=20)面额的硬币,每种硬币面值能整除比它大的面值.给一个c,告诉每种硬币的面值和数量,求最多能 ...

  7. 使用zTree控件制作的表格形式的树形+数据菜单

    測试了一下,兼容ie7以上, chrome opera ff 不使用对方css /*------------------------------------- zTree Style version: ...

  8. android ViewFlipper的使用

    有个android.widget.ViewAnimator类继承至FrameLayout,ViewAnimator类的作用是为FrameLayout里面的View切换提供动画效果.该类有如下几个和动画 ...

  9. vim的基本使用方法

    头记:vim作为被大多数程序员所推崇的编辑器,是源于它的自由灵活以及令人舒服的输入模式,但对于新手来说无疑是个噩梦(需要记太多的命令), 而作为使用了vim有一段时间的我来说,总结下常用的命令,以备新 ...

  10. 服务 远程服务 AIDL 进程间通讯 IPC

    Activity aidl接口文件 package com.bqt.aidlservice;  interface IBinderInterface {     /* 更改文件后缀为[.aidl]去掉 ...