/***
大意:计算gcd(x,y,z) =1 0<= x, y , z <= n 问有多少个这样的对
莫比乌斯反演:(反演: 用结果推原因)
函数m(m)的定义如下:

 莫比乌斯反演:

     * f(x) = sigma{g(d)}其中x % d == 0,则g(x) = sigma{miu(d) * f(x/d)}
* f(x) = sigma{g(d)}其中d % x == 0,则g(x) = sigma{miu(d/x) * f(d)} 莫比乌斯反演中miu(x) = * 1 {x中含有偶数个不同的质因子}
* -1 {x中含有奇数个不同的质因子}
* 0 {其他情况} 本题: 设f(x) = 约数为x 的所有数集合 g(x) = 最大公约数gcd 为x的集合
那么g(x) = siga(mu(d)*f(x/d)) x%d==0
或者 g(x) = siga(mu(d/x) *f(d)) d%x==0 在本题中只包含了x,y,z>1 情况 ,,还应加上退化到3个平面上的情况。。
1、 f(x) = n/x*n/x*n/x;----〉 g(x) = mu[i] *(n/x*n/x*n/x)
2、 加上退化到三个平面 ----〉 g(x) = mu[i]*(n/x+1)*(n/x+1)*(n/x+1) 或者分开求:
1、 三个坐标轴。。3
2、 空间中 n/x* n/x*n/x;
3、 三个坐标平面: n/x*n/x +n/x*n/x +n/x*n/x
**/
1、 第一种方法
#include <iostream>
#include <cstring>
using namespace std; const int maxn = ;
int pri[maxn];
int prime[maxn];
int mu[maxn]; void pri_mu(){
memset(prime,,sizeof(prime));
int cnt =;
mu[] =;
for(int i=;i<maxn;i++){
if(!prime[i]){
mu[i] =-;
pri[cnt++] = i;
}
for(int j=;j<cnt;j++){
if(i*pri[j]>maxn)
break;
prime[i*pri[j]] = ;
if(i%pri[j]==){
mu[i*pri[j]] =;
break;
}else
mu[i*pri[j]] = -mu[i];
}
}
} int main()
{
pri_mu();
int t;
cin>>t;
long long n;
while(t--){
cin>>n;
long long ans =;
for(int i=;i<=n;i++)
ans += (long long )mu[i]*((n/i+)*(n/i+)*(n/i+)-);
cout<<ans<<endl;
}
return ;
}
----------------------------------------------------------------------------------------------------------
2、 第二种方法
#include <iostream>
#include <cstring>
using namespace std; const int maxn = ;
int pri[maxn];
int prime[maxn];
int mu[maxn]; void pri_mu(){
memset(prime,,sizeof(prime));
int cnt =;
mu[] =;
for(int i=;i<maxn;i++){
if(!prime[i]){
mu[i] =-;
pri[cnt++] = i;
}
for(int j=;j<cnt;j++){
if(i*pri[j]>maxn)
break;
prime[i*pri[j]] = ;
if(i%pri[j]==){
mu[i*pri[j]] =;
break;
}else
mu[i*pri[j]] = -mu[i];
}
}
} int main()
{
pri_mu();
int t;
cin>>t;
long long n;
while(t--){
cin>>n;
long long ans =;
for(int i=;i<=n;i++)
ans += (long long )mu[i]*((n/i)*(n/i)*(n/i+));
cout<<ans<<endl;
}
return ;
}

spoj 7001的更多相关文章

  1. SPOJ 7001 VLATTICE【莫比乌斯反演】

    题目链接: http://www.spoj.com/problems/VLATTICE/ 题意: 1≤x,y,z≤n,问有多少对(x,y,z)使得gcd(x,y,z)=1 分析: 欧拉搞不了了,我们用 ...

  2. spoj 7001. Visible Lattice Points GCD问题 莫比乌斯反演

    SPOJ Problem Set (classical) 7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N la ...

  3. SPOJ 7001 VLATTICE - Visible Lattice Points(莫比乌斯反演)

    题目链接:http://www.spoj.com/problems/VLATTICE/ 题意:求gcd(a, b, c) = 1    a,b,c <=N 的对数. 思路:我们令函数g(x)为g ...

  4. SPOJ 7001. Visible Lattice Points (莫比乌斯反演)

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  5. Spoj 7001 Visible Lattice Points 莫比乌斯,分块

    题目:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37193   Visible Lattice Points Time L ...

  6. SPOJ 7001(莫比乌斯反演)

    传送门:Visible Lattice Points 题意:0<=x,y,z<=n,求有多少对xyz满足gcd(x,y,z)=1. 设f(d) = GCD(a,b,c) = d的种类数 : ...

  7. SPOJ 7001 Visible Lattice Points (莫比乌斯反演)

    题意:求一个正方体里面,有多少个顶点可以在(0,0,0)位置直接看到,而不被其它点阻挡.也就是说有多少个(x,y,z)组合,满足gcd(x,y,z)==1或有一个0,另外的两个未知数gcd为1 定义f ...

  8. spoj 7001 Visible Lattice Points莫比乌斯反演

    Visible Lattice Points Time Limit:7000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Su ...

  9. BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 5217  Solved: 1233 ...

随机推荐

  1. mysql的函数

  2. Java Native Interface Specification(JNI)

    Java Native Interface Specification(JNI) 使用场景: 需要的功能,标准的java不能提供 有了一个用其他的语言写好的工具包,希望用java去访问它 当需要高性能 ...

  3. ZOJ 2770 Burn the Linked Camp(spfa&&bellman)

    //差分约束 >=求最长路径 <=求最短路径 结果都一样//spfa#include<stdio.h> #include<string.h> #include< ...

  4. 【转】 一个fork的面试题

    转自:一个fork的面试题 前两天有人问了个关于Unix的fork()系统调用的面试题,这个题正好是我大约十年前找工作时某公司问我的一个题,我觉得比较有趣,写篇文章与大家分享一下.这个题是这样的: 题 ...

  5. BestCoder Round #46

    1001 YJC tricks time 题目链接:1001 题意:给你时针和分针所成的角度,输出现在的时间,以10秒为单位 思路:每10秒,分针走1度,时针走分针的1/12,我们可以根据时间来分别计 ...

  6. C++静态局部对象

    7.5局部对象 在C++语言中,对于每一个变量和对象,都有其各自的作用域和生存期,这两个概念一个是空间的,一个是时间的.对象的作用域指的是该变量的程序文本区,对象的生存期则是程序执行过程中对象存在的时 ...

  7. 百度下载google 浏览器安装失败

    installer integrity check has failed. Common causes include incomplete download and damaged media co ...

  8. 转:alphaImageLoader滤镜加载后 链接不能点击

    我是一个很少使用IE滤镜,也是一个不赞成使用IE滤镜的前端工程师.不过今天有一个朋友给我发来了一个有关于IE6的BUG,就是在IE6中使用了AlphaPNG透明的IE滤镜之后,a链接不能够点击.具体情 ...

  9. document.compatMode简介

    对于document.compatMode,很多朋友可能很少接触,知道他的存在却不清楚他的用途.今天在ext中看到 document.compatMode的使用,感觉这个对于我们开发兼容性的web页面 ...

  10. Jacob

    http://www.cnblogs.com/luckyxiaoxuan/archive/2012/06/13/2548331.html http://blog.csdn.net/qingwangyo ...