GJM : 数据结构 - 轻松看懂机器学习十大常用算法 [转载]
转载请联系原文作者 需要获得授权,非法转载 原文作者将享受侵权诉讼
文/不会停的蜗牛(简书作者)
原文链接:http://www.jianshu.com/p/55a67c12d3e9
通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题。
每个算法都看了好几个视频,挑出讲的最清晰明了有趣的,便于科普。
以后有时间再对单个算法做深入地解析。
今天的算法如下:
- 决策树
- 随机森林算法
- 逻辑回归
- SVM
- 朴素贝叶斯
- K最近邻算法
- K均值算法
- Adaboost 算法
- 神经网络
- 马尔可夫
1. 决策树
根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。
2. 随机森林
在源数据中随机选取数据,组成几个子集
S 矩阵是源数据,有 1-N 条数据,A B C 是feature,最后一列C是类别
由 S 随机生成 M 个子矩阵
这 M 个子集得到 M 个决策树
将新数据投入到这 M 个树中,得到 M 个分类结果,计数看预测成哪一类的数目最多,就将此类别作为最后的预测结果
3. 逻辑回归
当预测目标是概率这样的,值域需要满足大于等于0,小于等于1的,这个时候单纯的线性模型是做不到的,因为在定义域不在某个范围之内时,值域也超出了规定区间。
所以此时需要这样的形状的模型会比较好
那么怎么得到这样的模型呢?
这个模型需要满足两个条件 大于等于0,小于等于1
大于等于0 的模型可以选择 绝对值,平方值,这里用 指数函数,一定大于0
小于等于1 用除法,分子是自己,分母是自身加上1,那一定是小于1的了
再做一下变形,就得到了 logistic regression 模型
通过源数据计算可以得到相应的系数了
最后得到 logistic 的图形
4. SVM
support vector machine
要将两类分开,想要得到一个超平面,最优的超平面是到两类的 margin 达到最大,margin就是超平面与离它最近一点的距离,如下图,Z2>Z1,所以绿色的超平面比较好
将这个超平面表示成一个线性方程,在线上方的一类,都大于等于1,另一类小于等于-1
点到面的距离根据图中的公式计算
所以得到 total margin 的表达式如下,目标是最大化这个 margin,就需要最小化分母,于是变成了一个优化问题
举个栗子,三个点,找到最优的超平面,定义了 weight vector=(2,3)-(1,1)
得到 weight vector 为(a,2a),将两个点代入方程,代入(2,3)另其值=1,代入(1,1)另其值=-1,求解出 a 和 截矩 w0 的值,进而得到超平面的表达式。
a 求出来后,代入(a,2a)得到的就是 support vector
a 和 w0 代入超平面的方程就是 support vector machine
5. 朴素贝叶斯
举个在 NLP 的应用
给一段文字,返回情感分类,这段文字的态度是positive,还是negative
为了解决这个问题,可以只看其中的一些单词
这段文字,将仅由一些单词和它们的计数代表
原始问题是:给你一句话,它属于哪一类
通过 bayes rules 变成一个比较简单容易求得的问题
问题变成,这一类中这句话出现的概率是多少,当然,别忘了公式里的另外两个概率
栗子:单词 love 在 positive 的情况下出现的概率是 0.1,在 negative 的情况下出现的概率是 0.001
6. K最近邻
k nearest neighbours
给一个新的数据时,离它最近的 k 个点中,哪个类别多,这个数据就属于哪一类
栗子:要区分 猫 和 狗,通过 claws 和 sound 两个feature来判断的话,圆形和三角形是已知分类的了,那么这个 star 代表的是哪一类呢
k=3时,这三条线链接的点就是最近的三个点,那么圆形多一些,所以这个star就是属于猫
7. K均值
想要将一组数据,分为三类,粉色数值大,黄色数值小
最开心先初始化,这里面选了最简单的 3,2,1 作为各类的初始值
剩下的数据里,每个都与三个初始值计算距离,然后归类到离它最近的初始值所在类别
分好类后,计算每一类的平均值,作为新一轮的中心点
几轮之后,分组不再变化了,就可以停止了
8. Adaboost
adaboost 是 bosting 的方法之一
bosting就是把若干个分类效果并不好的分类器综合起来考虑,会得到一个效果比较好的分类器。
下图,左右两个决策树,单个看是效果不怎么好的,但是把同样的数据投入进去,把两个结果加起来考虑,就会增加可信度
adaboost 的栗子,手写识别中,在画板上可以抓取到很多 features,例如 始点的方向,始点和终点的距离等等
training 的时候,会得到每个 feature 的 weight,例如 2 和 3 的开头部分很像,这个 feature 对分类起到的作用很小,它的权重也就会较小
而这个 alpha 角 就具有很强的识别性,这个 feature 的权重就会较大,最后的预测结果是综合考虑这些 feature 的结果
9. 神经网络
Neural Networks 适合一个input可能落入至少两个类别里
NN 由若干层神经元,和它们之间的联系组成
第一层是 input 层,最后一层是 output 层
在 hidden 层 和 output 层都有自己的 classifier
input 输入到网络中,被激活,计算的分数被传递到下一层,激活后面的神经层,最后output 层的节点上的分数代表属于各类的分数,下图例子得到分类结果为 class 1
同样的 input 被传输到不同的节点上,之所以会得到不同的结果是因为各自节点有不同的weights 和 bias
这也就是 forward propagation
10. 马尔可夫
Markov Chains 由 state 和 transitions 组成
栗子,根据这一句话 ‘the quick brown fox jumps over the lazy dog’,要得到 markov chain
步骤,先给每一个单词设定成一个状态,然后计算状态间转换的概率
这是一句话计算出来的概率,当你用大量文本去做统计的时候,会得到更大的状态转移矩阵,例如 the 后面可以连接的单词,及相应的概率
生活中,键盘输入法的备选结果也是一样的原理,模型会更高级

原文链接:http://www.jianshu.com/p/55a67c12d3e9
GJM : 数据结构 - 轻松看懂机器学习十大常用算法 [转载]的更多相关文章
- 轻松看懂机器学习十大常用算法 (Machine Learning Top 10 Commonly Used Algorithms)
原文出处: 不会停的蜗牛 通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题. 每个算法都看了 ...
- 机器学习十大常用算法(CITE 不会停的蜗牛 ) interesting
算法如下: 决策树 随机森林算法 逻辑回归 SVM 朴素贝叶斯 K最近邻算法 K均值算法 Adaboost 算法 神经网络 马尔可夫 1. 决策树 根据一些 feature 进行分类,每个节点提一个问 ...
- 看完它,你就全懂了十大Wifi芯片原厂!
看完它,你就全懂了十大Wifi芯片原厂! 来源:全球物联网观察 概要:不知不觉中,WiFi几乎已攻占了整个世界.现在只要你上网,可能就离不开WiFi了. 2014年是物联网WiFi市场关键的转折期 ...
- 机器学习——十大数据挖掘之一的决策树CART算法
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第23篇文章,我们今天分享的内容是十大数据挖掘算法之一的CART算法. CART算法全称是Classification ...
- 机器学习十大算法之KNN(K最近邻,k-NearestNeighbor)算法
机器学习十大算法之KNN算法 前段时间一直在搞tkinter,机器学习荒废了一阵子.如今想重新写一个,发现遇到不少问题,不过最终还是解决了.希望与大家共同进步. 闲话少说,进入正题. KNN算法也称最 ...
- 机器学习十大算法 之 kNN(一)
机器学习十大算法 之 kNN(一) 最近在学习机器学习领域的十大经典算法,先从kNN开始吧. 简介 kNN是一种有监督学习方法,它的思想很简单,对于一个未分类的样本来说,通过距离它最近的k个" ...
- 十大排序算法JavaScript实现总结
花费了几周的时间断断续续的练习和模仿与使用JavaScript代码实现了十大排序算法. 里面有每种算法的动图和静态图片演示,看到图片可以自己先按照图片的思路实现一下. github中正文链接,点击查看 ...
- SEO站长必备的十大常用搜索引擎高级指令
作为一个seo人员,不懂得必要的搜索引擎高级指令,不是一个合格的seo.网站优化技术配合一些搜索引擎高级指令将使得优化工作变得简单.今日就和大家聊聊SEO站长必备的十大常用搜索引擎高级指令的那些事儿. ...
- js十大排序算法收藏
十大经典算法排序总结对比 转载自五分钟学算法&https://www.cnblogs.com/AlbertP/p/10847627.html 一张图概括: 主流排序算法概览 名词解释: n: ...
随机推荐
- Linux (Ubuntu12.04) 下开发工具安装和使用
Linux (Ubuntu12.04) 下开发工具安装和使用 这里讲述的是关于在ubuntu12.04下面安装和使用各种IDE 开发环境和初步使用的知识.说一下背景:很多的开发基本都是在linux操作 ...
- 数组的一个强大函数splice,[增,删,改]
// var a = [1,2,3]; // a.splice(0); // console.log(a); >>[] // a.splice(1); // console.log(a); ...
- Windows 系统下Git安装图解
简单来说Git是一个免费的.开源的版本控制软件,从功能上讲,跟我们比较熟悉的Subversion(SVN)这类版本控制软件没什么两样.由于工作的需求,需要在WinXP下安装git配合团队完成相应的工作 ...
- jQuery邮箱自动补全代码
JScript 代码 复制 (function($){ $.fn.emailMatch= function(settings){ var defaultSettings = { emailTip: ...
- MyBaits一对一的查询方法
MyBaits一对一的查询方法 一:表数据与表结构 CREATE TABLE teacher( t_id INT PRIMARY KEY AUTO_INCREMENT, t_name ) ); CRE ...
- java基础--相等
学习:http://www.cnblogs.com/dolphin0520/p/3780005.html#3163302 后发现居然有这么个东西,当然也不会注意什么自动拆箱和装箱,只知道用就行了.不过 ...
- 精品素材:15套免费的 Photoshop 自定义图形集
网上到处都是 Photoshop 笔刷,图案,纹理素材,最缺少的就是 Photoshop 形状.寻找定制的 Photoshop 形状是真的很难,因为很少有人提供这样的 Photoshop 形状的集合. ...
- 功能齐全并且比较时髦的Jquery通用开源框架之【ejq.js】
简介 ejq是一款非常小巧的JS工具库,未压缩才50K,在jquery的基础上对jquery缺失部分作了很好的弥补作用. 优点: 1.具有内置的模板解析引擎语法和angularjs相近减少学习成本 2 ...
- Laravel5设计json api时候的一些道道
对于返回数据格式没规整的问题 在开发api的时候,这个问题是和客户端交涉最多的问题,比如一个user结构,返回的字段原本是个user_name的,它应该是string类型.但是呢,由于数据库设计这个字 ...
- WCF服务创建与使用(双工模式)
昨天发布了<WCF服务创建与使用(请求应答模式)>,今天继续学习与强化在双工模式下WCF服务创建与使用,步骤与代码如下. 第一步,定义服务契约(Service Contract),注意Se ...