归并排序可以采用递归方法(见:归并排序),但递归方法会消耗深度位O(longn)的栈空间,使用归并排序时,应该尽量使用非递归方法。本文实现了java版的非递归归并排序。

更多:数据结构与算法合集

思路分析

  递归排序的核心是merge(int[] arr, int start, int mid, int end)函数,讲[start~mid-1]和[mid~end]部分的数据合并,递归代码是使用递归得到mid,一步步分解数组。

  非递归时,我们直接定义要合并的小数组长度从1开始,在较小的长度数组都合并完成后,令长度*2,继续进行合并,直到合并完成。

完整Java代码

(含测试代码)

public class MergeSort2 {
public void mergeSort(int[] arr) {
if(arr==null || arr.length<=0)
return;
int width = 1;
while(width<arr.length) {
mergePass(arr,width);
width*=2;
}
} private void mergePass(int[] arr,int width) {
int start=0;
while(start+2*width-1<arr.length) {
int mid=start+width-1;
int end=start+2*width-1;
merge(arr,start,mid,end);
start=start+2*width;
}
//剩余无法构成完整的两组也要进行处理
if(start+width-1<arr.length)
merge(arr, start, start+width-1, arr.length-1);
} private void merge(int[] arr, int start, int mid, int end) {
int i=start;
int j=mid+1;
int[] temp = new int[end-start+1];
int index=0;
while(i<=mid && j<=end) {
if(arr[i]<=arr[j])
temp[index++]=arr[i++];
else
temp[index++]=arr[j++];
}
while(i<=mid)
temp[index++]=arr[i++];
while(j<=end)
temp[index++]=arr[j++]; for(int k=start;k<=end;k++)
arr[k]=temp[k-start];
} //==========测试代码=================
public void test1() {
int[] a = null;
mergeSort(a);
System.out.println(Arrays.toString(a));
} public void test2() {
int[] a = {};
mergeSort(a);
System.out.println(Arrays.toString(a));
} public void test3() {
int[] a = { 1 };
mergeSort(a);
System.out.println(Arrays.toString(a));
} public void test4() {
int[] a = { 3, 3, 3, 3, 3 };
mergeSort(a);
System.out.println(Arrays.toString(a));
} public void test5() {
int[] a = { -3, 6, 3, 1, 3, 7, 5, 6, 2 };
mergeSort(a);
System.out.println(Arrays.toString(a));
} public static void main(String[] args) {
MergeSort2 demo =new MergeSort2();
demo.test1();
demo.test2();
demo.test3();
demo.test4();
demo.test5();
}
}

  

MergeSort2

更多:数据结构与算法合集

【Java】 归并排序的非递归实现的更多相关文章

  1. 8皇后以及N皇后算法探究,回溯算法的JAVA实现,非递归,循环控制及其优化

    上两篇博客 8皇后以及N皇后算法探究,回溯算法的JAVA实现,递归方案 8皇后以及N皇后算法探究,回溯算法的JAVA实现,非递归,数据结构“栈”实现 研究了递归方法实现回溯,解决N皇后问题,下面我们来 ...

  2. 【Java】快速排序的非递归实现

    快速排序一般采用递归方法(详见快速排序及其优化),但递归方法一般都可以用循环代替.本文实现了java版的非递归快速排序. 更多:数据结构与算法合集 思路分析 采用非递归的方法,首先要想到栈的使用,通过 ...

  3. 归并排序(非递归,Java实现)

    归并排序(非递归):自底向上 public class MergeSort { /** * @param arr 待排序的数组 * @param left 本次归并的左边界 * @param mid ...

  4. Java归并排序的递归与非递归实现

    该命题已有无数解释,备份修改后的代码 平均时间复杂度: O(NLogN)  以2为底 最好情况时间复杂度: O(NLogN) 最差情况时间复杂度: O(NLogN) 所需要额外空间: 递归:O(N + ...

  5. 排序算法练习--JAVA(插入、直接选择、冒泡、快速排序、非递归快速排序)

    排序算法是数据结构中的经典算法知识点,也是笔试面试中经常考察的问题,平常学的不扎实笔试时候容易出洋相,回来恶补,尤其是碰到递归很可能被问到怎么用非递归实现... package sort; impor ...

  6. 面试之路(16)-归并排序详解(MergeSort)递归和非递归实现

    归并排序的概念及定义 归并排序(Merge)是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的.然后再把有序子序列合并为整体有序序列. 归并排序是建立 ...

  7. 算法笔记_013:汉诺塔问题(Java递归法和非递归法)

    目录 1 问题描述 2 解决方案  2.1 递归法 2.2 非递归法 1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus ...

  8. javascript实现非递归--归并排序

    另一道面试题是实现归并排序,当然,本人很不喜欢递归法,因为递归一般都是没有迭代法好.所以首选都是用迭代法,但是迭代法确实是难做啊,至底而上的思想不好把握. 这是我的实现代码 /* * * 非递归版归并 ...

  9. 自己写算法---java的堆的非递归遍历

    import java.io.*; import java.util.*; public class Main { public static void main(String args[]) { S ...

随机推荐

  1. SQL Server 查询性能优化——覆盖索引

    覆盖索引又可以称为索引覆盖. 解释一: 就是select的数据列只用从索引中就能够取得,不必从数据表中读取,换句话说查询列要被所使用的索引覆盖. 解释二: 索引是高效找到行的一个方法,当能通过检索索引 ...

  2. Python 基础数据类型之set

    set是一个无序且不重复的元素集合,相当于字典的键,不重复,不可变 一.set变量初始化 A = set() #注意在创建空集合的时候只能使用s=set(),因为s={}创建的是空字典 B = {&q ...

  3. okhttp在https连接中出现java.net.ProtocolException: Expected ':status' header not present的解决办法

    将版本升级到 com.squareup.okhttp3:okhttp:3.9.0可以解决.

  4. PDF截取矢量图

    PDF截取矢量图 觉得有用的话,欢迎一起讨论相互学习~Follow Me 方法与步骤 下载并安装 Adobe Acrobat X Pro 软件 点击右侧按钮(工具)-页面-裁剪-单击并选择区域-双击实 ...

  5. SQL记录-PLSQL异常

    PL/SQL异常   程序执行过程中出现错误情况被称为在PL/SQL异常. PL/SQL支持程序员在程序中使用异常块捕获这样的条件并采取适当的动作应对错误情况.有两种类型的异常: 系统定义的异常 用户 ...

  6. Python 算法实现

    # [程序1] # 题目:有1.2.3.4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? l=[1,2,3,4] count = 0 for i in range(len(l)): fo ...

  7. meeting,symposium,seminar 等区别

    meeting,symposium,seminar 等区别 会议分类的方式可说是不胜枚举,这点初步由英文对会议名称的写法,就可看出端倪,像是Assembly,Caucus,Colloquium, Co ...

  8. CSS规范 - 代码格式--(来自网易)

    选择器.属性和值都使用小写 在xhtml标准中规定了所有标签.属性和值都小写,CSS也是如此.单行写完一个选择器定义 便于选择器的寻找和阅读,也便于插入新选择器和编辑,便于模块等的识别.去除多余空格, ...

  9. 第12月第8天 Retrofit.builder

    1. retrofit = new Retrofit.Builder() .client(okHttpClient) .addConverterFactory(GsonConverterFactory ...

  10. 第10月第25天 java annotation

    1. http://snkcxy.iteye.com/blog/1823046