MT【101】分配问题举例若干
先拿MT【100】的图表镇楼。

举几个例子:
【1】52张纸牌分发给4人,每人13张,问每人手中有一张小2的概率?
分析:第一步每人分一张小2,有4!种,然后48张牌平均分成4组有$\frac{48!}{12!12!12!12!}$易得概率为$4!\frac{48!(13!)^4}{52!(12!)^4}$大概为10.55%,有兴趣也可以算一下四张2都在某个人手里的概率。
【2】$(x+y+z+w)^5$的展开式有多少项?
分析:每一项都是5次方,相当于5个无区别的小球放入4个有标志的盒子里.每个盒子里放的球不加限制。也就是上表中第4种情况,有56种。$(x+y+z+w)^5$展开式如下:

注:顺便讲一下$x^2y^2z^1w^0$前的系数计算公式为$\frac{5!}{2!2!1!0!}$可以类比二项式定理$(x+y)^5$展开中$x^2y^3$前的系数公式$\frac{5!}{2!3!}$。
【3】$x_1+x_2+\cdots+x_k\le n$的非负整数解的个数.
分析:定义如下映射$(x_1,x_2,\cdots,x_k)\mapsto (x_1+1,x_1+x_2+1,\cdots,x_1+\cdots+x_k+k)$是$x_1+x_2+\cdots+x_k\le n$的非负整数解集到$\{1,2,\cdots,n+k\}$中取$k$项严格单调递增数列集合的一个一一映射,有$\dbinom{k+n}{k}$
注:这里可以得到一个恒等式:$\sum_{i=0}^{n}\dbinom{k+i-1}{i}=\dbinom{k+n}{n}$
【4】已知$b_1+2b_2+\cdots+nb_n=n$其中$b_1,b_2,\cdots,b_n\in N$,把$\{1,2,\cdots,n\}$的一个全排列放入以下框架中

问有多少种不同形式.
答:$\frac{n!}{b_1!b_2!\cdots b_n!1^{b_1}2^{b_2}\cdots n^{b_n}}$即对称群$S_n$中$1^{b_1}2^{b_2}\cdots n^{b_n}$型的元素个数。
MT【101】分配问题举例若干的更多相关文章
- ocp11g培训内部教材_052课堂笔记(042)_体系架构
OCP 052 课堂笔记 目录 第一部分: Oracle体系架构... 4 第一章:实例与数据库... 4 1.Oracle 网络架构及应用环境... 4 2.Oracle 体系结构... 4 3. ...
- 2016-04-25-信息系统实践手记5-CACHE设计一例
layout: post title: 2016-04-25-信息系统实践手记5-CACHE设计一例 key: 20160425 tags: 业务 场景 CACHE 系统分析 系统设计 缓存 modi ...
- 用Redis实现分布式锁 与 实现任务队列
这一次总结和分享用Redis实现分布式锁 与 实现任务队列 这两大强大的功能.先扯点个人观点,之前我看了一篇博文说博客园的文章大部分都是分享代码,博文里强调说分享思路比分享代码更重要(貌似大概是这个意 ...
- MDU某产品OMCI模块代码质量现状分析
说明 本文参考MDU系列某产品OMCI模块现有代码,提取若干实例以说明目前的代码质量,亦可作为甄别不良代码的参考. 本文旨在就事论事,而非否定前人(没有前人的努力也难有后人的进步).希望以史为鉴,不破 ...
- POJ 1050
#include <stdio.h> #include <string.h> #define mt 101 int main() { int a[mt][mt]; int st ...
- PL/SQL 04 游标 cursor
--游标 declare cursor 游标名字 is 查询语句;begin 其他语句;end; --游标的属性%FOUND%NOTFOUND%ISOPEN%ROWCOUNT(当前游标的指针位 ...
- MT【100】经典计数之分配问题
注意:此讲适合联赛一试学生,以及参加清华北大等名校的自主招生的学生. 经典计数之分配问题:把n个球放进k个盒子.考虑分配方法有三类:1.无限制 2.每个盒子至多一个(f 单的)3.每个盒子至少一个(f ...
- MT【29】介绍向量的外积及应用举例
我们在学校教材里学到的数量积(内积)其实还有一个孪生兄弟向量积(外积),这个对参加自主招生以及竞赛的学生来讲是需要掌握的,这里稍作介绍: 原理: 例题: 应用:
- Assignment Problem的若干思考
最近受到南京一个同学的push,又开始了博客园写作之旅.欢迎大家联系我做代码实现工作,QQ:1198552514.权当赚点生活费~ 我的研究也经常用的Assignment problem,而且很多 ...
随机推荐
- memcpy、memmove、memset、memchr、memcmp、strstr详解
第一部分 综述 memcpy.memmove.memset.memchr.memcmp都是C语言中的库函数,在头文件string.h中.memcpy和memmove的作用是拷贝一定长度的内存的内容,m ...
- 搭建Hadoop的HA高可用架构(超详细步骤+已验证)
一.集群的规划 Zookeeper集群: 192.168.182.12 (bigdata12)192.168.182.13 (bigdata13)192.168.182.14 (bigdata14) ...
- HUE配置HBase
HBase的配置 修改配置hue.ini的配置文件 [hbase] hbase_clusters=(Cluster|node1:) hbase_conf_dir=/usr/hbase-0.98.12. ...
- python基础1之python介绍、安装、变量和字符编码、数据类型、输入输出、数据运算、循环
开启python之路 内容概要: 一.python介绍 二.安装 三.第一个python程序 四.变量和字符编码 五.用户输入 六.数据类型 七.一切皆对象 八.数据运算 九.if else 流程判断 ...
- 20155306 白皎 0day漏洞——漏洞的复现
一.Ubuntu16.04 (CVE-2017-16995) 1.漏洞概述 Ubuntu最新版本16.04存在本地提权漏洞,该漏洞存在于Linux内核带有的eBPF bpf(2)系统调用中,当用户提供 ...
- 20155306 白皎 0day漏洞——漏洞利用原理之DEP
20155306 白皎 0day漏洞--漏洞利用原理之DEP 一.DEP机制的保护原理 1.为什么出现DEP? 溢出攻击的根源在于现代计算机对数据和代码没有明确区分这一先天缺陷,就目前来看重新去设计计 ...
- [CF1060E]Sergey and Subway[树dp]
题意 给出 \(n\) 个点的树,求 \(\sum_{i=1}^n{\sum_{j=i}^n{\lceil \frac{dis(i,j)}{2} \rceil}}\) . \(n\leq 2 \tim ...
- 拥抱函数式编程 I - 基本概念
函数编程与命令性编程 为支持使用纯函数方法解决问题,特此创建了函数编程范例. 函数编程是一种声明性编程形式.相比之下,大多数主流语言,包括面向对象的编程 (OOP) 语言(如 C#.Visual Ba ...
- Android与单片机通信常用数据转换方法(汇总)
下面直接贴代码 1. 将GB2312转化为中文,如BAFAC2DCB2B7→胡萝卜,两个字节合成一个文字 public static String stringToGbk(String string ...
- docker教程——docker镜像打包上传
在开始使用URLOS进行docker应用开发之前,我们先来了解一下docker镜像的打包方法.首先,安装URLOS,安装完成之后,docker也随之安装到了主机里.执行以下命令安装URLOS: cur ...