这可能是我打那么多次CF比赛时,做出来的最难的一道题了……而且这题也是个绝世好题……

题目链接:CF原网  洛谷

题目大意:$q$ 组询问,每次给定 $a$ 询问 $\gcd(a\&b,a\oplus b)$ 的最大值,其中 $1\le b<a$。规定 $\gcd(a,0)=a$。


真的是神仙题……

打几个表,我们发现如果 $a$ 的二进制表示中含有 $0$,比如 $100101100...$,也就是说不能表示成 $2^k-1$,那么他的答案就是所有 $2^k-1$ 中比 $a$ 大的最小的一个。

(虽然这个规律不是我打表找到的,是自己推出来的)

为什么呢?如果我们令 $b$ 为 $a$ 的位取反,那么 $a\&b=0,a\oplus b=2^k-1$。所以答案就是 $2^k-1$。可以证明答案不可能超过 $2^k-1$。

复杂度 $O(\log a)$。

那么 $a=2^k-1=(11111...)_2$ 怎么办呢?似乎大多数人都是暴力打出一个表然后直接调用的……

我的做法是:我们发现对于一个 $1\le b<a$,有 $a\&b=b,a\oplus b=a-b$。

那么 $\gcd(a\&b,a\oplus b)=\gcd(b,a-b)=\gcd(a,b)$!!!

$\gcd(a,b)$ 的最大值?就是 $a$ 的最大因数(不包括 $a$ 自己)。

总复杂度 $O(q\sqrt{a})$。

代码:

#include<bits/stdc++.h>
using namespace std;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
char ch=getchar();int x=,f=;
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int q,n;
int main(){
q=read();
while(q--){
n=read();
int c=;
while(c<=n) c<<=;
if(n!=c-) printf("%d\n",c-);
else{
bool flag=false;
for(int i=;i*i<=n;i++)
if(n%i==){printf("%d\n",n/i);flag=true;break;}
if(!flag) printf("1\n");
}
}
}

CF1110C Meaningless Operations(构造题)的更多相关文章

  1. CF1110C Meaningless Operations

    思路: 令x为满足2x <= a的最大的x.如果a的二进制表示中包含0,则将b构造为(2x+1 - 1) ^ a即可:否则gcd(a ^ b, a & b) = gcd(2x+1 - 1 ...

  2. C. Meaningless Operations Codeforces Global Round 1 异或与运算,思维题

    C. Meaningless Operations time limit per test 1 second memory limit per test 256 megabytes input sta ...

  3. cf251.2.C (构造题的技巧)

    C. Devu and Partitioning of the Array time limit per test 1 second memory limit per test 256 megabyt ...

  4. hdu4671 Backup Plan ——构造题

    link:http://acm.hdu.edu.cn/showproblem.php?pid=4671 其实是不难的那种构造题,先排第一列,第二列从后往前选. #include <iostrea ...

  5. Educational Codeforces Round 7 D. Optimal Number Permutation 构造题

    D. Optimal Number Permutation 题目连接: http://www.codeforces.com/contest/622/problem/D Description You ...

  6. Codeforces 482 - Diverse Permutation 构造题

    这是一道蛮基础的构造题. - k         +(k - 1)      -(k - 2) 1 + k ,    1 ,         k ,             2,    ....... ...

  7. BZOJ 3097: Hash Killer I【构造题,思维题】

    3097: Hash Killer I Time Limit: 5 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 963  Solved: 36 ...

  8. CF1110E Magic Stones(构造题)

    这场CF怎么这么多构造题…… 题目链接:CF原网 洛谷 题目大意:给定两个长度为 $n$ 的序列 $c$ 和 $t$.每次我们可以对 $c_i(2\le i<n)$ 进行一次操作,也就是把 $c ...

  9. CDOJ 1288 旅游的Final柱 构造题

    旅游的Final柱 题目连接: http://acm.uestc.edu.cn/#/problem/show/1288 Description 柱神要去打Final啦~(≧▽≦)/~啦啦啦 柱神来到了 ...

随机推荐

  1. c# 无边框窗体的边框阴影

    Windows API: using System; using System.Collections.Generic; using System.ComponentModel; using Syst ...

  2. ListBox项模板中绑定ListBoxItem属性的方法

    原文:ListBox项模板中绑定ListBoxItem属性的方法 <ListBox> <ListBox.ItemTemplate> <DataTemplate> & ...

  3. web网站的并发量级别

    web网站的并发量级别 评价一个网站的“大小”,处于视角的不同,有很多种衡量的方法,类似文章数,页面数之类的数据非常明显,也没有什么可以争议的.但对于并发来说,争议非常之多,这里就从一个技术的角度开始 ...

  4. Azure : 通过 SendGrid 发送邮件

    SendGrid 是什么? SendGrid 是架构在云端的电子邮件服务,它能提供基于事务的可靠的电子邮件传递.并且具有可扩充性和实时分析的能力.常见的用例有:1. 自动回复用户的邮件2. 定期发送信 ...

  5. Java收发邮件过程中具体的功能是怎么实现的

    SMTP协议 用户连上邮件服务器后,要想给它发送一封电子邮件,需要遵循一定的通迅规则,SMTP协议就是用于定义这种通讯规则的. 因而,通常我们也把处理用户smtp请求(邮件发送请求)的邮件服务器称之为 ...

  6. 智能合约bug以及修改方案

    截取两篇文章:第一遍文章说的是智能合约能不能修改的问题: ETC转到ETH地址以及转币进ETH智能合约账户能不能转出来? 第0章 引言 如果ETC充值到了ETH地址上,能找回来吗?答案是不一定. ET ...

  7. PBFT_拜占庭容错算法

    根据论文<Practical Byzantine Fault Tolerance and Proactive Recovery>整理 Practical byzantine fault t ...

  8. 如何解决python连接数据库编码问题(python传数据到mysql乱码)'ascii' codec can't encode _mysql_exceptions.OperationalError: (1366, "Incorrect string value:?

    首先描述下问题:  在使用python计算出结果后将结果插入到mysql过程中,报如下错误.原因很好定位就是编码的问题.那么到底是编码哪里出了问题了呢? 报错如上: 排查顺序: 第一:python的编 ...

  9. Vue 路由详解

    Vue 路由详解 对于前端来说,其实浏览器配合超级连接就很好的实现了路由功能.但是对于单页面应用来说,浏览器和超级连接的跳转方式已经不能适用,所以各大框架纷纷给出了单页面应用的解决路由跳转的方案. V ...

  10. 【SE】Week3 : 个人博客作业(必应词典)

    关于 微软必应词典客户端 的案例分析 [第一部分]  调研,评测 一.用户采访 1)   介绍采访对象的背景和需求: 被采访同学是马来西亚华裔叶能端同学,由于此前在马来西亚英语是第二语言,因此经常需要 ...