这可能是我打那么多次CF比赛时,做出来的最难的一道题了……而且这题也是个绝世好题……

题目链接:CF原网  洛谷

题目大意:$q$ 组询问,每次给定 $a$ 询问 $\gcd(a\&b,a\oplus b)$ 的最大值,其中 $1\le b<a$。规定 $\gcd(a,0)=a$。


真的是神仙题……

打几个表,我们发现如果 $a$ 的二进制表示中含有 $0$,比如 $100101100...$,也就是说不能表示成 $2^k-1$,那么他的答案就是所有 $2^k-1$ 中比 $a$ 大的最小的一个。

(虽然这个规律不是我打表找到的,是自己推出来的)

为什么呢?如果我们令 $b$ 为 $a$ 的位取反,那么 $a\&b=0,a\oplus b=2^k-1$。所以答案就是 $2^k-1$。可以证明答案不可能超过 $2^k-1$。

复杂度 $O(\log a)$。

那么 $a=2^k-1=(11111...)_2$ 怎么办呢?似乎大多数人都是暴力打出一个表然后直接调用的……

我的做法是:我们发现对于一个 $1\le b<a$,有 $a\&b=b,a\oplus b=a-b$。

那么 $\gcd(a\&b,a\oplus b)=\gcd(b,a-b)=\gcd(a,b)$!!!

$\gcd(a,b)$ 的最大值?就是 $a$ 的最大因数(不包括 $a$ 自己)。

总复杂度 $O(q\sqrt{a})$。

代码:

#include<bits/stdc++.h>
using namespace std;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
char ch=getchar();int x=,f=;
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int q,n;
int main(){
q=read();
while(q--){
n=read();
int c=;
while(c<=n) c<<=;
if(n!=c-) printf("%d\n",c-);
else{
bool flag=false;
for(int i=;i*i<=n;i++)
if(n%i==){printf("%d\n",n/i);flag=true;break;}
if(!flag) printf("1\n");
}
}
}

CF1110C Meaningless Operations(构造题)的更多相关文章

  1. CF1110C Meaningless Operations

    思路: 令x为满足2x <= a的最大的x.如果a的二进制表示中包含0,则将b构造为(2x+1 - 1) ^ a即可:否则gcd(a ^ b, a & b) = gcd(2x+1 - 1 ...

  2. C. Meaningless Operations Codeforces Global Round 1 异或与运算,思维题

    C. Meaningless Operations time limit per test 1 second memory limit per test 256 megabytes input sta ...

  3. cf251.2.C (构造题的技巧)

    C. Devu and Partitioning of the Array time limit per test 1 second memory limit per test 256 megabyt ...

  4. hdu4671 Backup Plan ——构造题

    link:http://acm.hdu.edu.cn/showproblem.php?pid=4671 其实是不难的那种构造题,先排第一列,第二列从后往前选. #include <iostrea ...

  5. Educational Codeforces Round 7 D. Optimal Number Permutation 构造题

    D. Optimal Number Permutation 题目连接: http://www.codeforces.com/contest/622/problem/D Description You ...

  6. Codeforces 482 - Diverse Permutation 构造题

    这是一道蛮基础的构造题. - k         +(k - 1)      -(k - 2) 1 + k ,    1 ,         k ,             2,    ....... ...

  7. BZOJ 3097: Hash Killer I【构造题,思维题】

    3097: Hash Killer I Time Limit: 5 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 963  Solved: 36 ...

  8. CF1110E Magic Stones(构造题)

    这场CF怎么这么多构造题…… 题目链接:CF原网 洛谷 题目大意:给定两个长度为 $n$ 的序列 $c$ 和 $t$.每次我们可以对 $c_i(2\le i<n)$ 进行一次操作,也就是把 $c ...

  9. CDOJ 1288 旅游的Final柱 构造题

    旅游的Final柱 题目连接: http://acm.uestc.edu.cn/#/problem/show/1288 Description 柱神要去打Final啦~(≧▽≦)/~啦啦啦 柱神来到了 ...

随机推荐

  1. 判断库位是否参与MRP运算

    表 T001L 字段DISKZ (库存地点MRP标识)为空,参与MRP运算,为1不参与.

  2. 20155213免考项目——bof进阶及简易的HIDAttack

    20155213免考项目--bof进阶及简易的HIDAttack 目录 序 任务一:构造Shellcode(64位) 任务二:64位Shellcode的注入 任务三:32位及64位bof攻击(开启堆栈 ...

  3. VS新建一个模板工程

    新建一个模板工程的好处:    1.就不用每次都走一边新建向导了,新建工程一步到位. 2.可以往项目中每次都的输入的代码,如一些声明注释-- 效果图: 具体步骤: 1.自己先新建一个属于自己的工程. ...

  4. asp.net web api参数

    翻译自:http://www.c-sharpcorner.com/article/parameter-binding-in-asp-net-web-api/ 主要自己学习下,说是翻译,主要是把文章的意 ...

  5. 172. Remove Element【LintCode by java】

    Description Given an array and a value, remove all occurrences of that value in place and return the ...

  6. Docker swarm集群搭建教程

    一.什么是Swarm Swarm这个项目名称特别贴切.在Wiki的解释中,Swarm behavior是指动物的群集行为.比如我们常见的蜂群,鱼群,秋天往南飞的雁群都可以称作Swarm behavio ...

  7. python发送邮件脚本ssl 465端口

    #coding:utf8 from smtplib import SMTP_SSL from email.header import Header from email.mime.text impor ...

  8. Alpha版本测试

    Alpha版本测试报告 项目名称:面向团队的日程提醒系统 软件版本:1.0.0 开发方:Team c# 开发代表:崔强 杜正远 是否经过开发自测(单元测试):是 软件运行环境: Android4.4. ...

  9. Linux内核分析-两种方式使用同一个系统调用

    实验部分 根据系统调用表,选取一个系统调用.我选得是mkdir这个系统调用,其系统调用号为39,即0x27 由于mkdir函数的原型为 int mkdir (const char *filename, ...

  10. 《Linux内核分析》 第四节 扒开系统调用的三层皮(上)

    <Linux内核分析> 第四节 扒开系统调用的三层皮(上) 张嘉琪 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com ...