什么毒瘤......

题意:模拟一棵单旋splay,求每次插入,splay最值,删除最值的操作次数。

解:乍一看感觉很神,又因为是LCT题单上的,然后就折磨了我好久,最后跑去看题解...

居然是手玩找规律题!我疯了。

是这样的,因为它只会单旋,而且只会splay最值,手玩一下就发现整个树的形态不变......就是把一个节点拿上去当根了,然后它的子节点代替它的位置。

插入,根据普通splay插入可知它一定接在前驱/后继的下面。找到深度大的那个就行了。

具体来说,用一棵值域线段树维护每个权值的深度。同时还要记录根,fa,son,树中节点数...

线段树要支持区间加,单点修改,查询第k大,区间求和,单点查询等功能。

大力分类讨论,注意一波细节,然后就A了...

 #include <cstdio>
#include <algorithm> const int N = ; struct Node {
int f, x;
}node[N]; int tag[N * ], sum[N * ], fa[N], s[N][], X[N], temp; inline void pushdown(int o) {
if(tag[o]) {
tag[o << ] += tag[o];
tag[o << | ] += tag[o];
tag[o] = ;
}
return;
} int ask(int p, int l, int r, int o) {
if(l == r) {
if(!sum[o]) {
tag[o] = ;
}
return tag[o];
}
pushdown(o);
int mid = (l + r) >> ;
if(p <= mid) {
return ask(p, l, mid, o << );
}
else {
return ask(p, mid + , r, o << | );
}
} void change(int p, int v, int l, int r, int o) {
if(l == r) {
if(v == -) {
sum[o] = tag[o] = ;
}
else {
sum[o] = ;
tag[o] = v;
}
return;
}
pushdown(o);
int mid = (l + r) >> ;
if(p <= mid) {
change(p, v, l, mid, o << );
}
else {
change(p, v, mid + , r, o << | );
}
sum[o] = sum[o << ] + sum[o << | ];
return;
} int getK(int k, int l, int r, int o) {
if(l == r) {
return r;
}
int mid = (l + r) >> ;
if(k <= sum[o << ]) {
return getK(k, l, mid, o << );
}
else {
return getK(k - sum[o << ], mid + , r, o << | );
}
} int getSum(int L, int R, int l, int r, int o) {
if(L <= l && r <= R) {
return sum[o];
}
int mid = (l + r) >> , ans = ;
if(L <= mid) {
ans += getSum(L, R, l, mid, o << );
}
if(mid < R) {
ans += getSum(L, R, mid + , r, o << | );
}
return ans;
} void add(int L, int R, int v, int l, int r, int o) {
if(L <= l && r <= R) {
tag[o] += v;
return;
}
pushdown(o);
int mid = (l + r) >> ;
if(L <= mid) {
add(L, R, v, l, mid, o << );
}
if(mid < R) {
add(L, R, v, mid + , r, o << | );
}
return;
} int main() {
int q, f, x, siz = , rt;
scanf("%d", &q);
for(int i = ; i <= q; i++) {
scanf("%d", &node[i].f);
if(node[i].f == ) {
scanf("%d", &node[i].x);
X[++temp] = node[i].x;
}
}
std::sort(X + , X + temp + );
temp = std::unique(X + , X + temp + ) - X - ;
for(int i = ; i <= q; i++) {
f = node[i].f;
if(f == ) {
x = std::lower_bound(X + , X + temp + , node[i].x) - X;
int k = getSum(, x, , temp, ), d;
if(!siz) {
d = ;
rt = x;
}
else if(!k) {
int r = getK(, , temp, );
d = ask(r, , temp, ) + ;
fa[x] = r;
s[r][] = x;
}
else if(k == siz) {
int l = getK(siz, , temp, );
d = ask(l, , temp, ) + ;
fa[x] = l;
s[l][] = x;
}
else {
int l = getK(k, , temp, );
int r = getK(k + , , temp, );
int dl = ask(l, , temp, );
int dr = ask(r, , temp, );
if(dl > dr) {
d = dl + ;
fa[x] = l;
s[l][] = x;
}
else {
d = dr + ;
fa[x] = r;
s[r][] = x;
}
}
change(x, d, , temp, );
printf("%d\n", d);
siz++;
}
else if(f == ) { // splay small
x = getK(, , temp, );
int d = ask(x, , temp, );
if(d > ) {
int r = fa[x];
if(s[x][]) {
fa[s[x][]] = r;
}
s[r][] = s[x][];
add(r, temp, , , temp, );
change(x, , , temp, );
fa[x] = ;
s[x][] = rt;
fa[rt] = x;
rt = x;
}
printf("%d\n", d);
}
else if(f == ) {
x = getK(siz, , temp, );
int d = ask(x, , temp, );
if(d > ) {
int l = fa[x];
if(s[x][]) {
fa[s[x][]] = l;
}
s[l][] = s[x][];
add(, l, , , temp, );
change(x, , , temp, );
fa[x] = ;
s[x][] = rt;
fa[rt] = x;
rt = x;
}
printf("%d\n", d);
}
else if(f == ) {
x = getK(, , temp, );
int d = ask(x, , temp, );
if(d > ) {
int r = fa[x];
if(s[x][]) {
fa[s[x][]] = r;
}
s[r][] = s[x][];
add(, r - , -, , temp, );
}
else {
add(, temp, -, , temp, );
rt = s[x][];
fa[s[x][]] = ;
}
change(x, -, , temp, );
printf("%d\n", d);
siz--;
}
else if(f == ) {
x = getK(siz, , temp, );
int d = ask(x, , temp, );
if(d > ) {
int l = fa[x];
if(s[x][]) {
fa[s[x][]] = l;
}
s[l][] = s[x][];
add(l + , temp, -, , temp, );
}
else {
add(, temp, -, , temp, );
rt = s[x][];
fa[s[x][]] = ;
}
change(x, -, , temp, );
printf("%d\n", d);
siz--;
}
}
return ;
}

AC代码

洛谷P3721 单旋的更多相关文章

  1. 洛谷 P3721 - [AH2017/HNOI2017]单旋(LCT)

    洛谷题面传送门 终于调出来这道题了,写篇题解( 首先碰到这样的题我们肯定要考虑每种操作会对树的形态产生怎样的影响: 插入操作:对于 BST 有一个性质是,当你插入一个节点时,其在 BST 上的父亲肯定 ...

  2. 洛谷P3721 [AH2017/HNOI2017]单旋(线段树 set spaly)

    题意 题目链接 Sol 这题好毒瘤啊.. 首先要观察到几个性质: 将最小值旋转到根相当于把右子树变为祖先的左子树,然后将原来的根变为当前最小值 上述操作对深度的影响相当于右子树不变,其他的位置-1 然 ...

  3. 洛谷P3371单源最短路径SPFA算法

    SPFA同样是一种基于贪心的算法,看过之前一篇blog的读者应该可以发现,SPFA和堆优化版的Dijkstra如此的相似,没错,但SPFA有一优点是Dijkstra没有的,就是它可以处理负边的情况. ...

  4. 洛谷P3371单源最短路径Dijkstra堆优化版及优先队列杂谈

    其实堆优化版极其的简单,只要知道之前的Dijkstra怎么做,那么堆优化版就完全没有问题了. 在做之前,我们要先学会优先队列,来完成堆的任务,下面盘点了几种堆的表示方式. priority_queue ...

  5. 洛谷P3371单源最短路径Dijkstra版(链式前向星处理)

    首先讲解一下链式前向星是什么.简单的来说就是用一个数组(用结构体来表示多个量)来存一张图,每一条边的出结点的编号都指向这条边同一出结点的另一个编号(怎么这么的绕) 如下面的程序就是存链式前向星.(不用 ...

  6. 洛谷 P4779 单源最短路径(标准版) 题解

    题面 这道题就是标准的堆优化dijkstra: 注意堆优化的dijkstra在出队时判断vis,而不是在更新时判断vis #include <bits/stdc++.h> using na ...

  7. 洛谷3721 HNOI2017单旋(LCT+set+思维)

    这题难道不是spaly裸题吗? 言归正传QWQ 一看到这个题目,其实第一反应是很懵X的 从来没有见过类似的题目啊,什么\(spaly\),单旋.QWQ很懵逼啊 不过,我们可以注意到这么一件事情,就是我 ...

  8. P3721 [AH2017/HNOI2017]单旋

    题目:https://www.luogu.org/problemnew/show/P3721 手玩一下即可AC此题. 结论:插入x后,x要么会成为x的前驱的右儿子,要么成为x的后继的左儿子,这取决于它 ...

  9. 洛谷 P4779【模板】单源最短路径(标准版)

    洛谷 P4779[模板]单源最短路径(标准版) 题目背景 2018 年 7 月 19 日,某位同学在 NOI Day 1 T1 归程 一题里非常熟练地使用了一个广为人知的算法求最短路. 然后呢? 10 ...

随机推荐

  1. 20155331 Exp3 免杀原理与实践

    20155331 Exp3 免杀原理与实践 基础问题回答 杀软是如何检测出恶意代码的? 1.基于特征码的检测,2.启发式恶意软件检测,3.基于行为的恶意软件检测. 免杀是做什么? 让病毒不被杀毒软件杀 ...

  2. Spring-data-jpa 学习笔记(一)

    Spring家族越来越强大,作为一名javaWeb开发人员,学习Spring家族的东西是必须的.在此记录学习Spring-data-jpa的相关知识,方便后续查阅. 一.spring-data-jpa ...

  3. EJB开发第一期---EJB开发配置

    一.EJB 3.0简介 1.1 什么是EJB Enterprise JavaBeans是一个用于分布式业务应用的标准服务端组件模型.采用Enterprise JavaBeans架构编写的应用是可伸缩的 ...

  4. 使用fddb的测试工具测试自己的检测器

    本文是在linux下测试的,首先编译,并安装gnuplot 按照程序给定,将文件放置到对应的文件夹下 #runEvaluate.pl # where gnuplot ismy $GNUPLOT = & ...

  5. idea 迁移maven项目出现导入仓库半天没反应的问题解决

    可以先参考: https://www.cnblogs.com/kinome/p/10289212.html 然后再看看maven配置文件是否正确,项目进行迁移时,如果环境不同,比如一个是使用的自定义m ...

  6. django请求的生命周期

    1. 概述 首先我们知道HTTP请求及服务端响应中传输的所有数据都是字符串. 在Django中,当我们访问一个的url时,会通过路由匹配进入相应的html网页中. Django的请求生命周期是指当用户 ...

  7. AngularJS + CoffeeScript 前端开发环境配置详解

    AngularJS 号称 '第一框架' ('The first framework') 确实是名不虚传.由其从jQuery中完全转入AngularJS后就有无法离开他的感觉了.虽然AngularJS的 ...

  8. 算法(JAVA)----两道小小课后题

    LZ最近翻了翻JAVA版的数据结构与算法,无聊之下将书中的课后题一一给做了一遍,在此给出书中课后题的答案(非标准答案,是LZ的答案,猿友们可以贡献出自己更快的算法). 1.编写一个程序解决选择问题.令 ...

  9. Js_图片轮播

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  10. 阿里云ESC入网和出网指的什么

    什么是入网带宽和出网带宽 云服务器 ECS 的入网带宽和出网带宽皆以服务器角度出发.下表给出了入网带宽和出网带宽的具体内容: 带宽类别 (Mbit/s) 描述 入网带宽 流入云服务器 ECS 的带宽从 ...