经典矩阵快速幂之一-----poj3233(矩阵套矩阵
题意:给你一个矩阵A,求S=A+A^2+A^3+...+A^k。
其实这个当时我看着毫无头绪,看了他们给的矩阵发现好!精!妙!
我们这样看


是不是有点思路!
没错!就是右上角,我们以此类推可以得到A+A^2+A^3+...+A^k+E,我们只要再减去个单位矩阵就好了。
但是!我矩阵里面怎么套矩阵!肿!么!办!其实很简单,一个n*n的矩阵,我们可以把它看成(2*n)*(2*n)的矩阵,就把他分成了四份,就如上图所示,就很简单了!
注意下小坑点:减了可能就负了,后面减完要加个mod(ง •_•)ง
#include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<cstring>
#include<queue>
#include<set>
#include<string>
#include<map>
#include <time.h>
#define PI acos(-1)
using namespace std;
typedef long long ll;
typedef double db;
const int maxn = ;
const int N = ;
const ll maxm = 1e7;
const int INF = 0x3f3f3f;
const ll inf = 1e15 + ;
const db eps = 1e-;
ll n, k, mod;
struct Matrix{
ll mat[maxn][maxn];
Matrix operator*(const Matrix& m)const{
Matrix tmp;
for (int i = ; i <= n; i++) {
for (int j = ; j <= n; j++) {
tmp.mat[i][j]=;
for (int k = ; k <= n; k++) {
tmp.mat[i][j] += mat[i][k]*m.mat[k][j]%mod;
tmp.mat[i][j]+=mod;
tmp.mat[i][j] %= mod;
}
}
}
return tmp;
}
}; int Pow(Matrix &m, int k) {
Matrix ans;
memset(ans.mat , , sizeof(ans.mat));
for (int i=; i<=n; i++) {
ans.mat[i][i]=;
ans.mat[i+n][i+n]=;
}
n*=;
while(k){
if(k&)
ans = ans*m;
k >>= ;
m = m*m;
}
n/=;
for (int i=; i<=n; i++) {
ans.mat[i][i+n]--;
ans.mat[i][i+n]+=mod;
ans.mat[i][i+n]%=mod;
}
for (int i=; i<=n; i++) {
for (int j=; j<=n; j++) {
if (j==n) printf("%d\n", ans.mat[i][j+n]);
else printf("%d ", ans.mat[i][j+n]);
}
}
} void solve() {
Matrix m; memset(m.mat, , sizeof(m.mat));
scanf("%lld%lld%lld", &n, &k, &mod);
for (int i = ; i <= n; i++) {
for (int j = ; j <= n; j++) {
scanf("%lld", &m.mat[i][j]);
m.mat[i][i+n]=;
m.mat[i+n][i+n]=;
}
}
k++;
Pow(m, k); }
int main() {
int t = ;
//freopen("in.txt", "r", stdin);
// scanf("%d", &t);
while(t--)
solve();
return ;
}
经典矩阵快速幂之一-----poj3233(矩阵套矩阵的更多相关文章
- Luogu P3390 【模板】矩阵快速幂&&P1939 【模板】矩阵加速(数列)
补一补之前的坑 因为上次关于矩阵的那篇blog写的内容太多太宽泛了,所以这次把一些板子和基本思路理一理 先看这道模板题:P3390 [模板]矩阵快速幂 首先我们知道矩阵乘法满足结合律而不满足交换律的一 ...
- 矩阵快速幂——将运算推广到矩阵上HDU 1575
/* 本题的思路比较简单,就是将递推公式写出来,然后表达成为一个矩阵的形式 最后通过计算就可以得到一个符合题目要求的矩阵, 然后就是将矩阵上面所有的对角线元素相加 得到的结果即为所求的目标 */ #i ...
- 矩阵快速幂+二分 poj3233
#include <iostream> #include <cstdio> #include <string> #include <cstring> # ...
- hdu 1005 Number Sequence(矩阵快速幂,找规律,模版更通用)
题目 第一次做是看了大牛的找规律结果,如下: //显然我看了答案,循环节点是48,但是为什么是48,据说是高手打表出来的 #include<stdio.h> int main() { ], ...
- poj 3070 Fibonacci (矩阵快速幂乘/模板)
题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...
- Count Numbers(矩阵快速幂)
Count Numbers 时间限制: 8 Sec 内存限制: 128 MB提交: 43 解决: 19[提交] [状态] [讨论版] [命题人:admin] 题目描述 Now Alice want ...
- hdu 5451 Best Solver 矩阵循环群+矩阵快速幂
http://acm.hdu.edu.cn/showproblem.php?pid=5451 题意:给定x 求解 思路: 由斐波那契数列的两种表示方法, 之后可以转化为 线性表示 F[n] = ...
- 矩阵快速幂---BestCoder Round#8 1002
当要求递推数列的第n项且n很大时,怎么快速求得第n项呢?可以用矩阵快速幂来加速计算.我们可以用矩阵来表示数列递推公式比如fibonacci数列 可以表示为 [f(n) f(n-1)] = [f(n ...
- P3390 【模板】矩阵快速幂
题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...
随机推荐
- C#调用dll提示"试图加载格式不正确的程序"原因及解决方法
转载:https://blog.csdn.net/songyi160/article/details/51354660 程序在32位操作系统上运行正常,在64位操作系统上运行读卡功能提示”试图加载格式 ...
- yum更换阿里源
备份mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup 下载新的CentOS-Base.repo ...
- Allowing GPU memory growth
By default, TensorFlow maps nearly all of the GPU memory of all GPUs (subject to CUDA_VISIBLE_DEVICE ...
- docker容器和镜像
这篇文章希望能够帮助读者深入理解Docker的命令,还有容器(container)和镜像(image)之间的区别,并深入探讨容器和运行中的容器之间的区别. 当我对Docker技术还是一知半解的时候,我 ...
- 24 【python入门指南】class
一.类 1.1,构造函数,析构函数 #!/bin/python class dog(): def __init__(self, age, name): self.age = age self.name ...
- 官方教程:Apache Kylin和Superset集成,使用开源组件,完美打造OLAP系统
本文转自Apache Kylin公众号apachekylin. Superset 是一个数据探索和可视化平台,设计用来提供直观的,可视化的,交互式的分析体验. Superset 提供了两种分析数据源的 ...
- 把leveldb嵌入到redis.实现真正的数据持久存储
目前最新版RedisStorage 是基于 redis 2.6.2基础上,加上 leveldb存储引擎. 这个项目是源于 公司项目的passport 用户认证改造.公司一个项目运行了N年.积累了几千万 ...
- Redis能干啥?细看11种Web应用场景[转]
下面列出11种Web应用场景,在这些场景下可以充分的利用Redis的特性,大大提高效率. 1.在主页中显示最新的项目列表. Redis使用的是常驻内存的缓存,速度非常快.LPUSH用来插入一个内容ID ...
- 【centos】centos安装配置samba
因为我的centos为一台阿里云服务器,想和我本机(mac)进行文件共享.所以在我的阿里云上安装配置samba. 服务器环境:centos 7.3 本地环境:mac 第1步:首先查看是否已经安装过了s ...
- 关于json.stringify的注意事项
今天通过navigator.getCurrentPosition中的success回调,用json.stringify打印postion时,怎么打印都只是一个{}, 而打印postion.coords ...