多项式

多项式乘法

FFT,NTT,MTT不是前置知识吗?随便学一下就好了(虽然我到现在还是不会MTT,exlucas也不会用
FTT总结
NTT总结

泰勒展开

如果一个多项式\(f(x)\)在\(x0\)时存在n阶导(就是可以求导\(n\)次),那么可以换成下面这样的一个式子:
\(\begin{aligned}f(x)&=f(x0)+\frac{f^1(x0)}{1!}(x-x0)+\frac{f^2(x0)}{2!}(x-x0)^2+...+\frac{f^n(x0)}{n!}(x-x0)^n+\xi\\&=\sum_{i=0}^n \frac{f^i(x0)}{i!}(x-x0)^i+\xi\end{aligned}\)
实在是不想写MathJax了,蒯一波yyb的

反正余项\(\xi\)趋近于无穷小(因为\(n\)趋近于无穷大),然后就可以忽略了.

然后如果\(x0=0\)的时候就可以直接搞了。

最常见的就是\(e^x\),因为这个东西是可以无限求导的.

套到之前的式子里面就是:

\(e^x=1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+...\)

牛顿迭代

不会证明,背背公式就好了。
\(B_{t+1}(x)=B_t(x)-\frac{F(B_t(x))}{F'(B_t(x))}\)

多项式求逆

随便推一下就可以了。
就是考虑\(A\)为原来的,\(B\)为逆数组;
这个东西可以套到牛顿迭代的式子里面去,然后就没了。

多项式的其他操作

挖坑待补(一般性都不要用)

生成函数

普通型生成函数(OGF)

给出一个数列\(a_0,a_1,a_2,...\)

它的OGF就是
\[
F(x)=a_0+a_1*x+a_2*x^2+...
\\
=\sum_{i=0}^{\infty}a_i*x^i
\]

指数型生成函数(EGF)

给出一个数列\(a_0,a_1,a_2,...\)

它的EGF就是
\[
F(x)=\sum_{i=0}^{\infty}\frac{a_i}{i!}*x^i
\]

OGF拓展

我们发现如果把斐波那契数列弄成一个生成函数的话,很显然就是:

\(F(x)=0+1*x+1*x^2+2*x^3+3*x^4+...\)

然后我们同时乘一下\(x\)

\(F'(x)=0+1*x^2+1*x^3+2*x^4+...\)

然后裂项一下就是:

\(F(x)-F'(x)=0+1*x+0+1*x^3+1*x^4+2*x^5\)

然后这样子就变成了:

\(x+x^2(0+1*x+1*x^2+...)\)

也就是说:\(F(x)-F'(x)=x+F(x)*x^2\)

发现这是一个好东西:

\(F(x)-x*F(x)=x+F(x)*x^2\)

然后移一下项就是:

\(F(x)*(x^2+x-1)*F(x)=-x\)

发现我们要求的是\(F(x)\),就可以写成:

\(F(x)=\frac{x}{1-x-x^2}\)

这个东西求的话还是线性的,考虑接着化简

最后就是这么一个烂玩意:

\(fib_n = -\frac{1}{\sqrt5}(\frac{1-\sqrt5}{2})^n + \frac{1}{\sqrt5}(\frac{1+\sqrt5}{2})^n\)

OGF和EGF的区别

我们发现EGF的公式多除了一个阶乘,也就意味分子多乘了一个阶乘,那么阶乘在排列组合下的意义是什么?

顺序,所以EGF和OGF的应用也就出来了:

  • OGF表示的是组合意义.
  • EGF用于求排列下的一些东西

引例:

1.现在有A,B两种物品,A中的物品只能够取奇数个,B中的只能取3的倍数个,求取n个有多少种方法(忽略取出的顺序)

考虑讲这两个写出来就是:

\(A(x)=1+3*x+5*x^2+...\)

\(B(x)=0+3*x+6*x^2+...\)

然后把这两个卷起来的第\(n\)项就是答案


2.现在有A,B两种物品,A中的物品只能够取奇数个,B中的只能取3的倍数个,求取n个有多少种方法(考虑取出的顺序)

考虑顺序的话就是EGF,还是像上面一样写出来

\(A(x)=\frac{1}{1!}x+\frac{1}{3!}x^3+\frac{1}{5!}x^5...\)

\(B(x)=1+\frac{1}{2!}x^2+\frac{1}{4!}x^4+...\)

然后我们就可以感觉这两个东西和我们之前有一个很像:

\(e^x=1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+...\)

不是吗?

然后考虑\(x\)与\(-x\)的展开和这个东西好像截然相反...

然后搞一下就好了.

所以:

\(A(x)=\frac{e^x-e^{-x}}{2}\)

\(B(x)=\frac{e^x+e^{-x}}{2}\)

然后这两个东西就很简单了.

应用

例题什么的蒯一发yyb的不就好了

字符串配对匹配相关

回文串匹配

BZOJ3160 万径人踪灭 Solution

考虑下面的这样一个回文串的式子:
\(s[x+i]=s[x-i]\),显然\(x\)是回文中心,然后考虑\((x-i)+(x+i)=2x\)这样的式子,不难发现就是一个卷积,然后就很简单了。

考虑只有两种,ab,分别对于这两种字母作为1|0搞一下

按照上面的做法卷起来-回文串的个数就是答案了.

有向图计数

具体观看Solution of DAG

未完待续

多项式&生成函数(~~乱讲~~)的更多相关文章

  1. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅲ

    第三波,走起~~ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ 单位根反演 今天打多校时 1002 被卡科技了 ...

  2. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ

    众所周知,tzc 在 2019 年(12 月 31 日)就第一次开始接触多项式相关算法,可到 2021 年(1 月 1 日)才开始写这篇 blog. 感觉自己开了个大坑( 多项式 多项式乘法 好吧这个 ...

  3. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ

    因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...

  4. 学了两天 react,乱讲一下学习思路,顺便弄了一个脚手架

    之前一直用 vue 做一些小项目,最近接触了一个项目是用 react 做前端,虽然本身是做后端开发的,但是前端还是要了解一点的. 现在的项目基本上都是前后端分离的,后端就先不提了.前端的框架也是层出不 ...

  5. 【算法乱讲】BSGS

    Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 ...

  6. CF438E The Child and Binary Tree(生成函数+多项式开根+多项式求逆)

    传送门 可以……这很多项式开根模板……而且也完全不知道大佬们怎么把这题的式子推出来的…… 首先,这题需要多项式开根和多项式求逆.多项式求逆看这里->这里,这里讲一讲多项式开根 多项式开方:已知多 ...

  7. Project Euler 101 :Optimum polynomial 最优多项式

    Optimum polynomial If we are presented with the first k terms of a sequence it is impossible to say ...

  8. 洛谷 P6570 - [NOI Online #3 提高组] 优秀子序列(集合幂级数+多项式)

    洛谷题面传送门 首先 \(3^n\) 的做法就不多说了,相信对于会状压 dp+会枚举子集的同学来说不算困难(暴论),因此这篇博客将着重讲解 \(2^nn^2\) 的做法. 首先如果我们把每个 \(a_ ...

  9. 冬令营前的一些计划&记录

    冬令营前的一些计划&记录 计划 yyb发现自己很多以前学过的东西完完全全不记得了,所以在接下来的时间里可能会留下多篇复习向的博客,当然也可能因为觉得没有必要复习而到处乱做题. 现在先大概归类一 ...

随机推荐

  1. mysql 批量杀进程

    select concat('KILL ',id,';') from information_schema.processlist where user='root';

  2. python 函数学习sys.argv[]

    sys.argv 参数 「argv」是「argument variable」参数变量的简写形式,一般在命令行调用的时候由系统传递给程序.这个变量其实是一个List列表,argv[0] 一般是“被调用的 ...

  3. 2019.01.16 bzoj3526: [Poi2014]Card(线段树)

    传送门 线段树菜题. 题意:有一些卡牌,正反各有一个数,你可以任意翻转,每次操作会将两张卡牌的位置调换,你需要在每次操作后回答以现在的卡牌顺序能否通过反转形成一个单调不降的序列. 思路: 对于一个线段 ...

  4. Spring MVC和Struts2的比较[转]

    虽然说没有系统的学习过Spring MVC框架, 但是工作这么长时间, 基本上在WEB层使用的都是Spring MVC, 自己觉得Struts2也是一个不错的WEB层框架, 这两种框架至今自己还未有比 ...

  5. CHAPITRE III

    Il me fallut longtemps pour comprendre d'où il venait. Le petit prince, qui me posait beaucoup de qu ...

  6. C语言的问题,头文件:keil也许有漏洞

    2018-06-15   16:52:03 ------------------------------------------------------------------------------ ...

  7. 安卓开机logo和开机动画的几种实现方法

    安卓4.2可用方法2-4,第一种方法未验证. 从理论上来说,android 有4个开机启动画面. 第一个应该是U-BOOT的启动画面,有些设备为了满足按动电源即有显示,在UBOOT里加了开机画面,实现 ...

  8. struts2访问web资源

    通过ActionContext访问 public class TestActionContextAction { public String execute(){ //获取 ActionContext ...

  9. (记忆化搜索 )The Triangle--hdu --1163

    http://poj.org/problem?id=1163     Description 73 88 1 02 7 4 44 5 2 6 5 (Figure 1) Figure 1 shows a ...

  10. 20155326 第十周课下作业-IPC

    20155326 第十周课下作业-IPC 学习题目: 研究Linux下IPC机制:原理,优缺点,每种机制至少给一个示例,提交研究博客的链接 共享内存 管道 FIFO 信号 消息队列 学习过程 -IPC ...