BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)
总感觉博客园的\(Markdown\)很。。\(gouzhi\),可以看这的。
题意即求第\(k\)个无平方因子数。
无平方因子数(Square-Free Number),即分解之后所有质因数的次数都为1的数
可以想到莫比乌斯函数,假设\(n\)是答案,那么有$$k=n-\sum_{i=1}^n(1-|\mu(i)|)$$
(从这里能看出\(x\)的上界,后面的\(\sum\)肯定是\(<\frac{n}{2}\)的,所以\(n\leq 2*k\))
二分一个\(n\),求\([1,n]\)中有多少个无平方因子数。
既然带着个平方就都开方。根据容斥,对于\([1,\sqrt{n}]\)中的质数,答案为$$[1,n]中0个质数平方倍数的个数-1个质数平方倍数的个数+2个质数平方倍数的个数-\ldots$$
即对于奇数个质数平方贡献为负,偶数个贡献为正,枚举这些质因子。若存在某个质因子的次数\(>1\),那么对答案没有影响(如\(pi^2*pj^2\)在计算\(pi*pj\)时统计了个数)。这也符合莫比乌斯函数的特点。那么答案可以写为:$$\sum_{i=1}{\lfloor\sqrt{n}\rfloor}\mu(i)*\lfloor\frac{n}{i2}\rfloor$$
也可以整除分块... 右端点是这样的:\(r=\sqrt{\frac{n}{n/i^2}}\)。
\(r\)最大是\(2e9\),所以\(l+r\)可能爆int!
就我被这个坑朝了吧。。
//1308kb 2148ms
#include <cmath>
#include <cstdio>
const int N=5e4;
int cnt,P[10005],mu[N+3],pw[N+3];
bool Not_P[N+3];
void Init()
{
mu[1]=1;
for(int i=2; i<N; ++i)
{
if(!Not_P[i]) P[++cnt]=i,mu[i]=-1;
for(int j=1; j<=cnt&&i*P[j]<N; ++j)
{
Not_P[i*P[j]]=1;
if(i%P[j]) mu[i*P[j]]=-mu[i];
else {mu[i*P[j]]=0; break;}
}
}
for(int i=1; i<N; ++i) pw[i]=i*i;
}
bool Check(long long n,int K)
{
int res=0;//res=n
for(int i=1,lim=sqrt(n); i<=lim; ++i)
if(mu[i]/*这个?*/) res+=mu[i]*(n/pw[i]);
return res>=K;
}
int main()
{
Init();
int T,K; scanf("%d",&T);
long long l,r,mid;//!
while(T--)
{
scanf("%d",&K), l=1, r=K<<1;
while(l<r)
if(Check(mid=(l+r)>>1,K)) r=mid;
else l=mid+1;
printf("%lld\n",l);
}
return 0;
}
BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)的更多相关文章
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...
- BZOJ 2440 [中山市选2011]完全平方数 ——莫比乌斯函数
$\sum_{i=1}^n[i==d^2*p]$ 其中p无平方因子$=\sum_{d^2\mid n,d>=2}\sum_{i=1}^{\lfloor {n/d^2} \rfloor} \lef ...
- BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4805 Solved: 2325[Submit][Sta ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
- BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )
先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...
- [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】
题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...
- bzoj 2440: [中山市选2011]完全平方数【莫比乌斯函数+二分】
二分答案,然后用莫比乌斯函数作为容斥系数,计算当前枚举的mid内有几个满足要求的数 #include<iostream> #include<cstdio> #include&l ...
- bzoj 2440: [中山市选2011]完全平方数
#include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...
随机推荐
- 获取web页面xpath
1. Open Chrome 2. Right click the element that you want to get xpath 3. select "Inspector" ...
- VMware Linux 下 Nginx 安装配置 - Tomcat 配置 (二)
准备工作 相关浏览: VMware Linux 下 Nginx 安装配置 (一) 1. 选在 /usr/local/ 下创建 softs 文件夹,通过 ftp 命令 把 apache-tomcat-7 ...
- Floyd判圈算法 UVA 11549 - Calculator Conundrum
题意:给定一个数k,每次计算k的平方,然后截取最高的n位,然后不断重复这两个步骤,问这样可以得到的最大的数是多少? Floyd判圈算法:这个算法用在循环问题中,例如这个题目中,在不断重复中,一定有一个 ...
- Linux驱动技术(四) _异步通知技术【转】
转自:https://www.cnblogs.com/xiaojiang1025/p/6376561.html 异步通知的全称是"信号驱动的异步IO",通过"信号&quo ...
- 深入理解C语言的函数调用过程 【转】
转自:http://blog.chinaunix.net/uid-25909619-id-4240084.html 原文地址:深入理解C语言的函数调用过程 作者:wjlkoorey258 本文 ...
- Linux下USB转串口的驱动【转】
转自:http://www.linuxidc.com/Linux/2011-02/32218.htm Linux发行版自带usb to serial驱动,以模块方式编译驱动,在内核源代码目录下运行Ma ...
- [转]MongoDB更新操作replaceOne()实例讲解
最近正在学习MongoDB,作为数据库的学习当然是要从CRUD开始学起了.这篇文章默认读者是知道如何安装MongoDB.如何运行MongoDB实例以及了解了MongoDB中的collection.do ...
- PHP URL中包含中文,查看时提示404
使用Microsoft Web Platform在IIS里配置安装一个wordpress,一切顺利. 当添加一片文章时,自动生成URL类似如下: http://localhost/wordpress/ ...
- tensorflow variable的保存和修改(加载一部分variable到新的model中)
link: https://www.tensorflow.org/guide/saved_model 中文博客:https://blog.csdn.net/Searching_Bird/article ...
- Java基础87 MySQL数据约束
1.默认值 -- 创建表student1,设置address字段有默认值 create table student1 ( id int, name ), address ) default '广东省深 ...