题目链接

总感觉博客园的\(Markdown\)很。。\(gouzhi\),可以看这的


题意即求第\(k\)个无平方因子数。

无平方因子数(Square-Free Number),即分解之后所有质因数的次数都为1的数

可以想到莫比乌斯函数,假设\(n\)是答案,那么有$$k=n-\sum_{i=1}^n(1-|\mu(i)|)$$

(从这里能看出\(x\)的上界,后面的\(\sum\)肯定是\(<\frac{n}{2}\)的,所以\(n\leq 2*k\))

二分一个\(n\),求\([1,n]\)中有多少个无平方因子数。

既然带着个平方就都开方。根据容斥,对于\([1,\sqrt{n}]\)中的质数,答案为$$[1,n]中0个质数平方倍数的个数-1个质数平方倍数的个数+2个质数平方倍数的个数-\ldots$$

即对于奇数个质数平方贡献为负,偶数个贡献为正,枚举这些质因子。若存在某个质因子的次数\(>1\),那么对答案没有影响(如\(pi^2*pj^2\)在计算\(pi*pj\)时统计了个数)。这也符合莫比乌斯函数的特点。那么答案可以写为:$$\sum_{i=1}{\lfloor\sqrt{n}\rfloor}\mu(i)*\lfloor\frac{n}{i2}\rfloor$$

也可以整除分块... 右端点是这样的:\(r=\sqrt{\frac{n}{n/i^2}}\)。

\(r\)最大是\(2e9\),所以\(l+r\)可能爆int!

就我被这个坑朝了吧。。

//1308kb	2148ms
#include <cmath>
#include <cstdio>
const int N=5e4; int cnt,P[10005],mu[N+3],pw[N+3];
bool Not_P[N+3]; void Init()
{
mu[1]=1;
for(int i=2; i<N; ++i)
{
if(!Not_P[i]) P[++cnt]=i,mu[i]=-1;
for(int j=1; j<=cnt&&i*P[j]<N; ++j)
{
Not_P[i*P[j]]=1;
if(i%P[j]) mu[i*P[j]]=-mu[i];
else {mu[i*P[j]]=0; break;}
}
}
for(int i=1; i<N; ++i) pw[i]=i*i;
}
bool Check(long long n,int K)
{
int res=0;//res=n
for(int i=1,lim=sqrt(n); i<=lim; ++i)
if(mu[i]/*这个?*/) res+=mu[i]*(n/pw[i]);
return res>=K;
} int main()
{
Init();
int T,K; scanf("%d",&T);
long long l,r,mid;//!
while(T--)
{
scanf("%d",&K), l=1, r=K<<1;
while(l<r)
if(Check(mid=(l+r)>>1,K)) r=mid;
else l=mid+1;
printf("%lld\n",l);
}
return 0;
}

BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)的更多相关文章

  1. BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数

    BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...

  2. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

  3. BZOJ 2440 [中山市选2011]完全平方数 ——莫比乌斯函数

    $\sum_{i=1}^n[i==d^2*p]$ 其中p无平方因子$=\sum_{d^2\mid n,d>=2}\sum_{i=1}^{\lfloor {n/d^2} \rfloor} \lef ...

  4. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  5. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  6. BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )

    先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...

  7. [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】

    题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...

  8. bzoj 2440: [中山市选2011]完全平方数【莫比乌斯函数+二分】

    二分答案,然后用莫比乌斯函数作为容斥系数,计算当前枚举的mid内有几个满足要求的数 #include<iostream> #include<cstdio> #include&l ...

  9. bzoj 2440: [中山市选2011]完全平方数

    #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...

随机推荐

  1. UnicodeDecodeError gbk codec can't decode byte in position illegal multibyte sequence

    UnicodeDecodeError:'gbk' codec can't decode byte in position : illegal multibyte sequence 觉得有用的话,欢迎一 ...

  2. java CountDownLatch的使用

    CountDownLatch能够使一个线程在等待另外一些线程完成各自工作之后,再继续执行.使用一个计数器进行实现.计数器初始值为线程的数量.当每一个线程完成自己任务后,计数器的值就会减一.当计数器的值 ...

  3. Miller_Rabin 素数测试

    费马定理的逆定理几乎可以用来判断一个数是否为素数,但是有一些数是判断不出来的,因此,Miller_Rabin测试方法对费马的测试过程做了改进,克服其存在的问题. 推理过程如下(摘自维基百科): 摘自另 ...

  4. 解决Winsock2.h和afxsock.h定义冲突的办法

    如果我们在工程中使用了afxsock.h,但在其它的地方又加了些 使用winsock2.h,哈哈,VC会告诉你一大堆错误,大意就是有定义重复,该怎么解决? 由于MFC的SOCKET类使用的是Winso ...

  5. Javascript - Vue - 指令

    指令 v-cloak 解决闪烁,闪烁是指在网速较慢的情况下可能会出现插值表达式{{}}还没有填充数据时会把该表达式直接显示在页面上,如果不希望看到插值表达式则可以使用v-cloak指令,具体做法如下 ...

  6. 使用Sysmon和Splunk探测网络环境中横向渗透

    当前很难在网络中探测攻击者横向渗透,其中原因有很难获取必要的日志和区别正常与恶意行为.本篇文章介绍通过部署Sysmon并将日志发送到SIEM来探测横向渗透. 工具: Sysmon + Splunk l ...

  7. Replication容量和错误日志

    gtid排错 set sql_log_bin=off;  #人为关闭二进制日志

  8. 『记录』Android参考资料

    欢迎留言推荐好的教程.资料.博客及作者等. 『记录』Android参考资料 1.前期环境 Android Studio使用Git Android Studio快捷键总结 Android Studio及 ...

  9. Flask源码解析:Flask应用执行流程及原理

    WSGI WSGI:全称是Web Server Gateway Interface,WSGI不是服务器,python模块,框架,API或者任何软件,只是一种规范,描述服务器端如何与web应用程序通信的 ...

  10. apache本地配置多域名(wampserver本地配置多域名)

    我们在本地开发时,一般是在浏览器输入 http://localhost/项目文件夹名来测试网页文件,你有没有想过在本地在浏览器输入你自己设定的一个域名进入项目文件夹中去,本地配置多域名可以测试二级域名 ...