1、MNIST数据集简介

  首先通过下面两行代码获取到TensorFlow内置的MNIST数据集:

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('./data/mnist', one_hot=True)

  MNIST数据集共有55000(mnist.train.num_examples)张用于训练的数据,对应的有55000个标签;共有10000(mnist.test.num_examples)张用于测试的图片的数据,同样的有10000个标签与之对应。为了方便访问,这些图片或标签的数据都是被格式化了的。

  MNIST数据集的训练数据集(mnist.train.images)是一个 55000 * 784 的矩阵,矩阵的每一行代表一张图片(28 * 28 * 1)的数据,图片的数据范围是 [0, 1],代表像素点灰度归一化后的值。

  训练集的标签(mnist.train.labels)是一个55000 * 10 的矩阵,每一行的10个数字分别代表对应的图片属于数字0到9的概率,范围是0或1。一个标签行只有一个是1,表示该图片的正确数字是对应的下标值, 其余是0。

  测试集与训练集的类似,只是数据量不同。

  以下代码显示部分MNIST训练图片的形状及标签:

import numpy as np
import matplotlib.pyplot as plot
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('./data/mnist', one_hot=True)
trainImages = mnist.train.images
trainLabels = mnist.train.labels plot.figure(1, figsize=(4, 3))
for i in range(6):
curImage = np.reshape(trainImages[i, :], (28, 28))
curLabel = np.argmax(trainLabels[i, :])
ax = plot.subplot(int(str(23) + str(i+1)))
plot.imshow(curImage, cmap=plot.get_cmap('gray'))
plot.axis('off')
ax.set_title(curLabel) plot.suptitle('MNIST')
plot.show()

  上述代码输出的MNIST图片及其标签:

 2、通过单层神经网络进行训练

 def train(trainCycle=50000, debug=False):
inputSize = 784
outputSize = 10
batchSize = 64
inputs = tf.placeholder(tf.float32, shape=[None, inputSize]) # x * w = [64, 784] * [784, 10]
weights = tf.Variable(tf.random_normal([784, 10], 0, 0.1))
bias = tf.Variable(tf.random_normal([outputSize], 0, 0.1))
outputs = tf.add(tf.matmul(inputs, weights), bias)
outputs = tf.nn.softmax(outputs) labels = tf.placeholder(tf.float32, shape=[None, outputSize]) loss = tf.reduce_mean(tf.square(outputs - labels))
optimizer = tf.train.GradientDescentOptimizer(0.1)
trainer = optimizer.minimize(loss) sess = tf.Session()
sess.run(tf.global_variables_initializer())
for i in range(trainCycle):
batch = mnist.train.next_batch(batchSize)
sess.run([trainer, loss], feed_dict={inputs: batch[0], labels: batch[1]}) if debug and i % 1000 == 0:
corrected = tf.equal(tf.argmax(labels, 1), tf.argmax(outputs, 1))
accuracy = tf.reduce_mean(tf.cast(corrected, tf.float32))
accuracyValue = sess.run(accuracy, feed_dict={inputs: batch[0], labels: batch[1]})
print(i, ' train set accuracy:', accuracyValue) # 测试
corrected = tf.equal(tf.argmax(labels, 1), tf.argmax(outputs, 1))
accuracy = tf.reduce_mean(tf.cast(corrected, tf.float32))
accuracyValue = sess.run(accuracy, feed_dict={inputs: mnist.test.images, labels: mnist.test.labels})
print("accuracy on test set:", accuracyValue) sess.close()

3、训练结果

  上述模型的最终输出为:

由打印日志可以看出,前期收敛速度很快,后期开始波动。最后该模型在训练集上的正确率大概为90%,测试集上也差不多。精度还是比较低的,说明单层的神经网络在处理图片数据上存在着很大的缺陷,并不是一个很好的选择。

本文地址:https://www.cnblogs.com/laishenghao/p/9576806.html

TensorFlow训练MNIST数据集(1) —— softmax 单层神经网络的更多相关文章

  1. TensorFlow 训练MNIST数据集(2)—— 多层神经网络

    在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码 ...

  2. TensorFlow训练MNIST数据集(3) —— 卷积神经网络

    前面两篇随笔实现的单层神经网络 和多层神经网络, 在MNIST测试集上的正确率分别约为90%和96%.在换用多层神经网络后,正确率已有很大的提升.这次将采用卷积神经网络继续进行测试. 1.模型基本结构 ...

  3. 使用tensorflow实现mnist手写识别(单层神经网络实现)

    import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data import n ...

  4. 2、TensorFlow训练MNIST

    装载自:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html TensorFlow训练MNIST 这个教程的目标读者是对机器学习和T ...

  5. 一个简单的TensorFlow可视化MNIST数据集识别程序

    下面是TensorFlow可视化MNIST数据集识别程序,可视化内容是,TensorFlow计算图,表(loss, 直方图, 标准差(stddev)) # -*- coding: utf-8 -*- ...

  6. 使用caffe训练mnist数据集 - caffe教程实战(一)

    个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...

  7. 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集

    上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...

  8. TensorFlow训练MNIST报错ResourceExhaustedError

    title: TensorFlow训练MNIST报错ResourceExhaustedError date: 2018-04-01 12:35:44 categories: deep learning ...

  9. 深度学习原理与框架-Tensorflow基本操作-mnist数据集的逻辑回归 1.tf.matmul(点乘操作) 2.tf.equal(对应位置是否相等) 3.tf.cast(将布尔类型转换为数值类型) 4.tf.argmax(返回最大值的索引) 5.tf.nn.softmax(计算softmax概率值) 6.tf.train.GradientDescentOptimizer(损失值梯度下降器)

    1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参 ...

随机推荐

  1. Oracle EBS AR 其他API

    DECLARE L_CR_ID NUMBER; L_ATTRIBUTE_REC AR_RECEIPT_API_PUB.ATTRIBUTE_REC_TYPE; L_GLOBAL_ATT_REC AR_R ...

  2. 176条DevOps人员常用的linux命令速查表

      线上查询及帮助命令 文件和目录操作命令 查看文件及内容处理命令 文件压缩及解压缩命令 信息显示命令 搜索文件命令 用户管理命令 基础网络操作命令 深入网络操作命令 有关磁盘与文件系统的命令 系统权 ...

  3. 解决windows下vim中文乱码

    解决windows下vim中文乱码 windows安装了vim8,也就是gvim后,打开带有中文的文档,显示中文是乱码. 毕竟有许多文档我是用utf-8编码的,所以解决的办法是设置一下编码为utf-8 ...

  4. SQL server权限管理和备份实例

    权限设置: 1.创建用户zhangsan,并赋予zhangsan有dbcreator的服务器权限. 2.使用zhangsan登录,测试能否创建数据库. 3.使用sa用户附加myschool数据库,设置 ...

  5. 在servlet中用spring @Autowire注入Bean

    在servlet中新增init方法: public void init(ServletConfig config) { super.init(config); SpringBeanAutowiring ...

  6. npm WARN unmet dependency问题的解决方法

    remove node_modules $ rm -rf node_modules/ run $ npm cache clean 详见这里: http://stackoverflow.com/ques ...

  7. 线程同步方式之互斥量Mutex

    互斥量和临界区非常相似,只有拥有了互斥对象的线程才可以访问共享资源,而互斥对象只有一个,因此可以保证同一时刻有且仅有一个线程可以访问共享资源,达到线程同步的目的. 互斥量相对于临界区更为高级,可以对互 ...

  8. python reload(sys)找不到,name 'reload' is not defined和Python3异常-AttributeError: module 'sys' has no att

    基于python3.6.1版本,在一个.py文件中,加入这3行:import requests, re, sysreload(sys)sys.setdefaultencoding("utf- ...

  9. python第二十九课——文件读写(写数据的操作)

    演示写数据的操作: 结论:往文件中写入数据,如果文件不存在,先创建文件,再写入内容 #1.打开文件 fw=open(r'd.txt','w',encoding='utf-8') #2.写数据操作 fw ...

  10. rhel7.6上安装Oracle 19.2.0.0 RAC

    1. 软硬件检查 2. 安装前环境配置 3. 安装GI su - grid -- 解压软件包 unzip -q /ups/soft/V981627-01.zip -d ${ORACLE_HOME} - ...