TensorFlow训练MNIST数据集(1) —— softmax 单层神经网络
1、MNIST数据集简介
首先通过下面两行代码获取到TensorFlow内置的MNIST数据集:
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('./data/mnist', one_hot=True)
MNIST数据集共有55000(mnist.train.num_examples)张用于训练的数据,对应的有55000个标签;共有10000(mnist.test.num_examples)张用于测试的图片的数据,同样的有10000个标签与之对应。为了方便访问,这些图片或标签的数据都是被格式化了的。
MNIST数据集的训练数据集(mnist.train.images)是一个 55000 * 784 的矩阵,矩阵的每一行代表一张图片(28 * 28 * 1)的数据,图片的数据范围是 [0, 1],代表像素点灰度归一化后的值。
训练集的标签(mnist.train.labels)是一个55000 * 10 的矩阵,每一行的10个数字分别代表对应的图片属于数字0到9的概率,范围是0或1。一个标签行只有一个是1,表示该图片的正确数字是对应的下标值, 其余是0。
测试集与训练集的类似,只是数据量不同。
以下代码显示部分MNIST训练图片的形状及标签:
import numpy as np
import matplotlib.pyplot as plot
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('./data/mnist', one_hot=True)
trainImages = mnist.train.images
trainLabels = mnist.train.labels plot.figure(1, figsize=(4, 3))
for i in range(6):
curImage = np.reshape(trainImages[i, :], (28, 28))
curLabel = np.argmax(trainLabels[i, :])
ax = plot.subplot(int(str(23) + str(i+1)))
plot.imshow(curImage, cmap=plot.get_cmap('gray'))
plot.axis('off')
ax.set_title(curLabel) plot.suptitle('MNIST')
plot.show()
上述代码输出的MNIST图片及其标签:
2、通过单层神经网络进行训练
def train(trainCycle=50000, debug=False):
inputSize = 784
outputSize = 10
batchSize = 64
inputs = tf.placeholder(tf.float32, shape=[None, inputSize]) # x * w = [64, 784] * [784, 10]
weights = tf.Variable(tf.random_normal([784, 10], 0, 0.1))
bias = tf.Variable(tf.random_normal([outputSize], 0, 0.1))
outputs = tf.add(tf.matmul(inputs, weights), bias)
outputs = tf.nn.softmax(outputs) labels = tf.placeholder(tf.float32, shape=[None, outputSize]) loss = tf.reduce_mean(tf.square(outputs - labels))
optimizer = tf.train.GradientDescentOptimizer(0.1)
trainer = optimizer.minimize(loss) sess = tf.Session()
sess.run(tf.global_variables_initializer())
for i in range(trainCycle):
batch = mnist.train.next_batch(batchSize)
sess.run([trainer, loss], feed_dict={inputs: batch[0], labels: batch[1]}) if debug and i % 1000 == 0:
corrected = tf.equal(tf.argmax(labels, 1), tf.argmax(outputs, 1))
accuracy = tf.reduce_mean(tf.cast(corrected, tf.float32))
accuracyValue = sess.run(accuracy, feed_dict={inputs: batch[0], labels: batch[1]})
print(i, ' train set accuracy:', accuracyValue) # 测试
corrected = tf.equal(tf.argmax(labels, 1), tf.argmax(outputs, 1))
accuracy = tf.reduce_mean(tf.cast(corrected, tf.float32))
accuracyValue = sess.run(accuracy, feed_dict={inputs: mnist.test.images, labels: mnist.test.labels})
print("accuracy on test set:", accuracyValue) sess.close()
3、训练结果
上述模型的最终输出为:
由打印日志可以看出,前期收敛速度很快,后期开始波动。最后该模型在训练集上的正确率大概为90%,测试集上也差不多。精度还是比较低的,说明单层的神经网络在处理图片数据上存在着很大的缺陷,并不是一个很好的选择。
本文地址:https://www.cnblogs.com/laishenghao/p/9576806.html
TensorFlow训练MNIST数据集(1) —— softmax 单层神经网络的更多相关文章
- TensorFlow 训练MNIST数据集(2)—— 多层神经网络
在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码 ...
- TensorFlow训练MNIST数据集(3) —— 卷积神经网络
前面两篇随笔实现的单层神经网络 和多层神经网络, 在MNIST测试集上的正确率分别约为90%和96%.在换用多层神经网络后,正确率已有很大的提升.这次将采用卷积神经网络继续进行测试. 1.模型基本结构 ...
- 使用tensorflow实现mnist手写识别(单层神经网络实现)
import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data import n ...
- 2、TensorFlow训练MNIST
装载自:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html TensorFlow训练MNIST 这个教程的目标读者是对机器学习和T ...
- 一个简单的TensorFlow可视化MNIST数据集识别程序
下面是TensorFlow可视化MNIST数据集识别程序,可视化内容是,TensorFlow计算图,表(loss, 直方图, 标准差(stddev)) # -*- coding: utf-8 -*- ...
- 使用caffe训练mnist数据集 - caffe教程实战(一)
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...
- 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集
上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...
- TensorFlow训练MNIST报错ResourceExhaustedError
title: TensorFlow训练MNIST报错ResourceExhaustedError date: 2018-04-01 12:35:44 categories: deep learning ...
- 深度学习原理与框架-Tensorflow基本操作-mnist数据集的逻辑回归 1.tf.matmul(点乘操作) 2.tf.equal(对应位置是否相等) 3.tf.cast(将布尔类型转换为数值类型) 4.tf.argmax(返回最大值的索引) 5.tf.nn.softmax(计算softmax概率值) 6.tf.train.GradientDescentOptimizer(损失值梯度下降器)
1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参 ...
随机推荐
- 在 Azure VM 中使用应用商店映像创建 HPC Pack 群集的头节点
使用 Azure 应用商店和 Azure 门户中的 Microsoft HPC Pack 2012 R2 虚拟机映像创建 HPC 群集的头节点. 此 HPC Pack VM 映像基于预安装了 HPC ...
- Azure 中虚拟机的备份和还原选项
可以通过定期创建备份来保护数据. 有多个备份选项可用于 VM,具体取决于使用案例. Azure 备份 若要备份运行生产工作负荷的 Azure VM,请使用 Azure 备份. Azure 备份对 Wi ...
- WebBrowser实现:自动填充网页上的用户名和密码并点击登录按钮
private void webBrowser1_DocumentCompleted(object sender, WebBrowserDocumentCompletedEventArgs e) { ...
- Innodb存储引擎的缓存命中率计算
数据库的慢查询是我们在生产环境中必须经常检测的,如果慢查询语句过多,说明我们应该增加buffer_pool的大小了.常常检查的指标就是查看缓存命中率是否过低. mysql> show statu ...
- 安装composer出现链接补上的问题
下载 Composer-Setup.exe 后安装出错: Composer Download Error Connection Error [ERR_CONNECTION]: Unable to co ...
- 51nod 1636 教育改革
题目链接 令f[i][j][k]为第i天选择的课程为j,设置作业为a[j]+k时的最大作业量. 那么f[i][j][k]可以由哪些状态转移而来?先把课程按复杂度排序,那么可以转移来的课程是f[i-1] ...
- ArcGIS Earth1.9最新版安装和使用教程
1.下载ArcGIS Earth 官网下载地址:https://www.esri.com/en-us/arcgis/products/arcgis-earth 在这个网页的最下面填上信息,就可以下载了 ...
- [ML学习笔记] 朴素贝叶斯算法(Naive Bayesian)
[ML学习笔记] 朴素贝叶斯算法(Naive Bayesian) 贝叶斯公式 \[P(A\mid B) = \frac{P(B\mid A)P(A)}{P(B)}\] 我们把P(A)称为"先 ...
- Balanced Search Trees
平衡搜索树 前面介绍的二叉搜索树在最坏情况下的性能还是很糟糕,而且我们不能控制操作的顺序,有时根本就不是随机的,我们希望找到有更好性能保证的算法. 2-3 search trees 于是先来了解下 2 ...
- SDN期末验收
队名:取个队名真难 一.网络拓扑 二.负载均衡程序 1.建立拓扑的代码 拓扑 2.下发组表流表的代码 下发流表 三.演示视频 1.目的 服务器h2,h3,h4上各自有不同的服务,h1是客户端.实现一个 ...