「SCOI2014」方伯伯运椰子

可以看出是分数规划

然后我们可以看出其实只需要改变1的流量就可以了,因为每次改变要保证流量守恒,必须流成一个环,在正负性确定的情况下,变几次是无所谓的。

然后按照套路,设

\[ans=\frac{X-Y}{k}\\
ans\times k =X-Y\\
ans\times k=-\sum w_i\\
\sum ans-w_i=0
\]

从第二部到第三步是把X和Y中的共同边都减掉了

\(w\)是根据扩容或者缩容建的边权为\(b+d,a-d\)的边权集合

注意一点,缩小容量必须\(c_i>0\)

然后发现环的边数就是\(k\),减过去就可以二分ans了


Code:

#include <cstdio>
#include <cctype>
#include <cstring>
template <class T>
void read(T &x)
{
x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
}
const int N=5010;
const int M=6010;
int n,m,u[N],v[N],a[N],b[N],c[N],d[N];
int head[N],to[M],Next[M],cnt;double edge[M];
void add(int u,int v,double w)
{
to[++cnt]=v,edge[cnt]=w,Next[cnt]=head[u],head[u]=cnt;
}
int used[N],vis[N],q[N*N],l,r;double dis[N];
bool spfa()
{
for(int i=1;i<=n+2;i++) dis[i]=1e12;
memset(vis,0,sizeof vis);
memset(used,0,sizeof used);
dis[q[l=r=1]=n+1]=0;
while(l<=r)
{
int now=q[l++];
used[now]=0;
for(int v,i=head[now];i;i=Next[i])
if(dis[v=to[i]]>dis[now]+edge[i])
{
dis[v]=dis[now]+edge[i];
if((++vis[v])==n+2) return true;
if(!used[v]) used[q[++r]=v]=1;
}
}
return false;
}
bool check(double x)
{
memset(head,0,sizeof head),cnt=0;
for(int i=1;i<=m;i++)
{
if(u[i]!=n+1)
{
if(c[i]!=0) add(v[i],u[i],x+a[i]-d[i]);
add(u[i],v[i],x+b[i]+d[i]);
}
else
add(u[i],v[i],0);
}
return spfa();
}
int main()
{
read(n),read(m);
double l=0,r=0;
for(int i=1;i<=m;i++)
{
read(u[i]),read(v[i]),read(a[i]);
read(b[i]),read(c[i]),read(d[i]);
r+=1.0*c[i]*d[i];
}
while(l+1e-6<r)
{
double mid=(l+r)/2;
if(check(mid)) l=mid;
else r=mid;
}
printf("%.2lf\n",l);
return 0;
}

2019.2.24

「SCOI2014」方伯伯运椰子 解题报告的更多相关文章

  1. 「SCOI2014」方伯伯的 OJ 解题报告

    「SCOI2014」方伯伯的 OJ 和列队有点像,平衡树点分裂维护即可 但是需要额外用个set之类的对编号查找点的位置 插入完了后记得splay,删除时注意特判好多东西 Code: #include ...

  2. 「SCOI2014」方伯伯的商场之旅 解题报告

    「SCOI2014」方伯伯的商场之旅 我一开始的想法会被两个相同的集合位置去重给搞死,不过应该还是可以写的,讨论起来老麻烦. 可以先钦定在\(1\)号点集合,然后往后调整一部分. 具体一点,通过前缀和 ...

  3. 「SCOI2014」方伯伯的玉米田 解题报告

    #2211. 「SCOI2014」方伯伯的玉米田 发现是取一个最长不下降子序列 我们一定可以把一个区间加的右端点放在取出的子序列的最右边,然后就可以dp了 \(dp_{i,j}\)代表前\(i\)个玉 ...

  4. 「SCOI2014」方伯伯的商场之旅

    「SCOI2014」方伯伯的商场之旅 题目描述 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子.说来也巧,位置在 \(i\) 的人面前的第 \(j\) 堆的石 ...

  5. bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 144  Solved: 78[Submit][Status ...

  6. bzoj 3597: [Scoi2014]方伯伯运椰子 [01分数规划 消圈定理 spfa负环]

    3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费 ...

  7. bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 594  Solved: 360[Submit][Statu ...

  8. 3597: [Scoi2014]方伯伯运椰子[分数规划]

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MB Submit: 404  Solved: 249 [Submit][Sta ...

  9. 【BZOJ3597】方伯伯运椰子(分数规划,网络流)

    [BZOJ3597]方伯伯运椰子(分数规划,网络流) 题解 给定了一个满流的费用流模型 如果要修改一条边,那么就必须满足流量平衡 也就是会修改一条某两点之间的路径上的所有边 同时还有另外一条路径会进行 ...

随机推荐

  1. 【转】Linux下cp: omitting directory `XXX'问题解决

    在linux系统中复制文件夹时提示如下: Shell代码 [root@idtp4 site-packages]# /site-packages/ cp: omitting directory ‘yag ...

  2. Linux awk使用方法~~整理

    目录 awk行处理方式 awk命令格式 命令行格式 脚本格式 命令行格式——基本格式 awk内置变量 awk内置函数 测试数据 awk变量和函数使用实例 逻辑判断式 扩展格式 BEGIN 和 END ...

  3. 搭建RISC-V错误记录

    错误:riscv64-unknown-elf-gcc: Command not found 解决办法:将riscv64-unknown-elf-gcc文件拷贝到根目录的/bin目录下. 原因是make ...

  4. asp.net core发布到linux

    在发布到linux的过程中出现两个问题现在总结一下: 我的虚拟机是安装到本机上面的,所以,应该在虚拟机的设置里面设置端口映射.具体设置如下: 选择vm上方的编辑 在弹出的框中选择VMnet8,点击下方 ...

  5. laravel 关联中的预加载

    预加载 当作为属性访问 Eloquent 关联时,关联数据是「懒加载」的.意味着在你第一次访问该属性时,才会加载关联数据.不过,是当你查询父模型时,Eloquent 可以「预加载」关联数据.预加载避免 ...

  6. Linux 下面 Sqlserver 2017 的简单安装

    1. 公司网络太烂 yum 在线安装失败 2. 解决方法 找微软的官网 百度网盘 离线下载rpm包. https://packages.microsoft.com/rhel/7/mssql-serve ...

  7. Day 4-5 序列化 json & pickle &shelve

    序列化: 序列化是指把内存里的数据类型转变成字符串,以使其能存储到硬盘或通过网络传输到远程,因为硬盘或网络传输时只能接受bytes. 反序列化: 把字符转成内存里的数据类型. 用于序列化的两个模块.他 ...

  8. Swagger2常用注解及其说明 (转)

    Api 用在Controller中,标记一个Controller作为swagger的文档资源 属性名称 说明 value Controller的注解 description 对api资源的描述 hid ...

  9. mysql第一天【mysqldump导出数据和mysql导入数据】

    1.使用mysqldump导出数据到本地sql文件 在mysql>bin下执行: 例如: mysqldump -hrm-2ze8mpi5i65429l1qvo.mysql.rds.aliyunc ...

  10. 数据驱动-参数化(Parameters)

    在录制程序运行的过程中,Vugen(脚本生成器)自动生成了脚本以及录制过程中实际用到的数据.在这个时候,脚本和数据是混在一起的. 在登录操作中,很明显xpj与123123是填入的数据,如果Contro ...