BZOJ 1912: [Apio2010]patrol 巡逻 (树的直径)(详解)
题目:
https://www.lydsy.com/JudgeOnline/problem.php?id=1912
题解:
首先,显然当不加边的时候,遍历一棵树每条边都要经过两次。那么现在考虑k==1的情况,考虑加入的这一条边有什么作用。
显然,如图4边的作用就是使得原来的1-2-3-3-2-1路线变为了4-3-2-1或1-2-3-4,那么作用就是以多走一步的代价使得这条新边两端的两个结点的遍历路径长度减半。
因此,想要使路径最短,就要使这条新边两端的两个结点之间的距离更长,显然,当两端的结点在原树中的路径为原树的直径时取得k==1时的最优解。设直径长度为dis,则k==1时ans=(n-1)*2-dis+1。
那么,k==2的时候怎么办呢。显然直接求次长链的做法是错的,因为求次长链的时候会与直径的某些边重复,那么这些边就是没有意义的,答案显然不更优。
因此,我们采用另一种方法:将直径上的边权全部置成-1,然后再跑一遍最长链。开始我也很不懂为什么要置成-1而不置成0,欸还是上面那张图是因为你考虑当你通过4边走到最下面那个点之后,显然你还是要回到最初的点的,而如果路径上的边与之前的直径重复,那么等于说你多加了一遍这条边,因此置成-1后不就相当于没加吗
P.S.当边权有负数时求直径不能用两边dfs,而应该用dp。WA了好久qwq。。。于是我第一遍求直径时用的两边dfs,第二遍用的dp。。。
代码:
#include<bits/stdc++.h> using namespace std; const int maxn=;
int dep[maxn],fa[maxn],head[maxn],cnt=,root,ans,n,k,mdep[maxn],maxx; struct ed{
int next,to,w;
}e[maxn<<]; void add(int u,int v){
e[++cnt]=(ed){head[u],v,},head[u]=cnt;
e[++cnt]=(ed){head[v],u,},head[v]=cnt;
} void dfs(int now,int f){
fa[now]=f;mdep[now]=;
for(int i=head[now];i;i=e[i].next){
int tt=e[i].to;
if(tt==f) continue;
dep[tt]=dep[now]+e[i].w;
dfs(tt,now); mdep[now]=max(mdep[now],mdep[tt]+e[i].w);
}
} void dp(int now,int f){
int fm=-,sm=-;
for(int i=head[now];i;i=e[i].next){
int tt=e[i].to;
if(tt==f) continue;
if(mdep[tt]+e[i].w>sm){
if(mdep[tt]+e[i].w>fm)
swap(fm,sm),fm=mdep[tt]+e[i].w;
else
sm=mdep[tt]+e[i].w;
}
dp(tt,now);
}
maxx=max(maxx,fm+sm);
maxx=max(maxx,fm);
maxx=max(maxx,sm);
} int main(){
scanf("%d%d",&n,&k);
int u,v;
for(int i=;i<n;i++)
scanf("%d%d",&u,&v),add(u,v);
dfs(,);root=;
for(int i=;i<=n;i++)
if(dep[i]>dep[root])
root=i;
dep[root]=,dfs(root,);
for(int i=;i<=n;i++)
if(dep[i]>dep[root])
root=i;
ans=(n-)*-dep[root]+;
if(k==){
while(fa[root])
for(int i=head[root];i;i=e[i].next){
int tt=e[i].to;
if(tt==fa[root]){
e[i].w=e[i^].w=-;
root=fa[root];break;
}
}
dep[]=;maxx=-0x3f3f3f3f;
dfs(,);dp(,);
ans-=maxx-;
}
printf("%d",ans);
return ;
}
BZOJ 1912: [Apio2010]patrol 巡逻 (树的直径)(详解)的更多相关文章
- bzoj 1912 : [Apio2010]patrol 巡逻 树的直径
题目链接 如果k==1, 显然就是直径. k==2的时候, 把直径的边权变为-1, 然后在求一次直径. 变为-1是因为如果在走一次这条边, 答案会增加1. 学到了新的求直径的方法... #includ ...
- bzoj 1912: [Apio2010]patrol 巡逻【不是dp是枚举+堆】
我是智障系列.用了及其麻烦的方法= =其实树形sp就能解决 设直径长度+1为len(环长) 首先k=1,直接连直径两端就好,答案是2*n-len 然后对于k=2,正常人的做法是树形dp:先求直径,然后 ...
- bzoj 1912: [Apio2010]patrol 巡逻
呵呵呵呵呵呵,自己画图,大概半个小时,觉的连上边会成环(是不是该交仙人掌了??)然后求环不重合部分最大就好了, 结果写了一坨DP,最后写不下去了,再次扒了题解. 发现我真的是个sb. k==1,直接是 ...
- 【BZOJ-1912】patrol巡逻 树的直径 + DFS(树形DP)
1912: [Apio2010]patrol 巡逻 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 1034 Solved: 562[Submit][St ...
- 【BZOJ】1912: [Apio2010]patrol 巡逻(树的直径)
题目 传送门:QWQ 分析 $ k=1 $ 时显然就是树的直径 $ k=2 $ 时怎么做呢? 做法是把一开始树的直径上的边的边权改成$ -1 $,那么当我们第二次用这些边做环时就抵消了一开始的贡献. ...
- BZOJ 1912:[Apio2010]patrol 巡逻(树直径)
1912: [Apio2010]patrol 巡逻 Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示村庄a与b之间有一条道路(1 ≤ ...
- [Apio2010]patrol 巡逻
1912: [Apio2010]patrol 巡逻 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 2541 Solved: 1288[Submit][S ...
- 【BZOJ1912】[Apio2010]patrol 巡逻 树形DP
[BZOJ1912][Apio2010]patrol 巡逻 Description Input 第一行包含两个整数 n, K(1 ≤ K ≤ 2).接下来 n – 1行,每行两个整数 a, b, 表示 ...
- AVL树平衡旋转详解
AVL树平衡旋转详解 概述 AVL树又叫做平衡二叉树.前言部分我也有说到,AVL树的前提是二叉排序树(BST或叫做二叉查找树).由于在生成BST树的过程中可能会出现线型树结构,比如插入的顺序是:1, ...
随机推荐
- Laravel5 创建自定义门面(Facade)
门面为应用服务容器中的绑定类提供了一个“静态”接口.Laravel 内置了很多门面,你可能在不知道的情况下正在使用它们.Laravel 的门面作为服务容器中底层类的“静态代理”,相比于传统静态方法,在 ...
- Prime Permutation
Prime Permutation 原题地址: http://codeforces.com/problemset/problem/123/A 题目大意: 给你一个字符串(只包含小写字母),从1开始存放 ...
- python之路--关于线程的一些方法
一 . 线程的两种创建方式 from threading import Thread # 第一种创建方式 def f1(n): print('%s号线程任务'%n) def f2(n): print( ...
- python学习笔记(10)--组合数据类型(字典类型)
理解映射: 映射是一种键(索引)和值(数据)的对应.字典是键值对的集合,键值之间无序.用大括号表示{},和dict()创建,键值对用冒号:表示. {键:值,键:值,键:值} >>> ...
- 二进制安装MongoDB
1.下载mongodb cd /usr/local/src/ wget https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-4.0.5.tgz ...
- servletContext和request对象的生命周期比较
ServletContext: 创建:服务器启动 销毁:服务器关闭 域的作用范围:整个web应用 Request: 创建:访问时创建request 销毁:响应结束request销毁 域的作用范围:一次 ...
- 初识Anrdiod SDK
概念 SDK:(software development kit)软件开发工具包.被软件开发工程师用于为特定的软件包.软件框架.硬件平台.操作系统等建立应用软件的开发工具的集合. 因此,Android ...
- 七、.net core下配置、数据库访问等操作实现
配置读取 .net core下读取配置还是有点麻烦的,本身没有System.Configuration.dll,所以在进行配置前需要自行引用Microsoft.Extensions.Configura ...
- LodopJS文档式模版的加载和赋值
Lodop模版有两种方法,一种是传统的JS语句,可以用JS方法里的eval来执行,一种是文档式模版,是特殊格式的base64码,此篇博文介绍文档式模版的加载,文档式模版的生成以及传统JS模版的生成加载 ...
- 使用电脑adb给Essential Phone刷机 —(官方篇)
用ADB给Essential Phone线刷升级 重要:请确保在刷机前已经解锁,关于解锁教程群里有! 准备 原版boot Twrp boot Magisk卡刷包 到官网下载OTA包 准备好Essent ...