String 类的实现(2)引用计数与写时拷贝
1.引用计数
我们知道在C++中动态开辟空间时是用字符new和delete的。其中使用new test[N]方式开辟空间时实际上是开辟了(N*sizeof(test)+4)字节的空间。如图示
其中保存N的值主要用于析构函数中析构对象的次数delete[] p时先取N(*((int*)p-1))。我们参照这种机制在实现String类的时候提供一个计数,将指向new开辟的空间的指针个数保存下来,当计数不小于或不等于0时不进行析构对象,也不释放空间。直到计数为0时释放空间。
String的所有赋值、拷贝构造操作,计数器都会 +1 ; string 对象析构时,如果计数器为 0 则释放内存空间,否则计数器 -1 。实现代码如下
//引用计数方法
int my_strlen(const char *p)
{
int count = ;
assert(p);
while (*p != '\0')
{
p++;
count++;
}
return count;
}
char* my_strcopy(char* dest, const char* str)
{
assert(dest != NULL);
assert(str != NULL);
char* ret = dest;
while (*dest++ = *str++)
{
;
}
return ret;
}
class String
{
public:
String(const char *pStr = "")
{
if (pStr == NULL)
{
_pStr = new char[];
*_pStr = '\0';
}
else
{
_pStr = new char[strlen(pStr) + ];
my_strcopy(_pStr, pStr);
}
_pCount = new int();
}
String(const String& s)
:_pStr(s._pStr)
,_pCount(s._pCount)
{
_pStr++;
*(_pCount)++;
} ~String()
{
if (_pStr && ( == --(*_pCount)))
{
delete[] _pStr;
_pStr = NULL;
delete[] _pCount;
_pCount;
}
} String& operator=(const String& s)
{
if (this != &s)
{
if (_pStr && ( == --(*_pCount)))
{
delete[] _pStr;
delete[] _pCount;
}
_pStr = s._pStr;
_pCount = s._pCount;
--(*_pCount);
}
return *this;
} private:
char *_pStr;
int *_pCount;
};
int main()
{
String s1;
String s2 = "";
String s3(s2);
String s4;
s4 = s2;
}
引用计数定义成类普通成员变量和静态成员变量(被static修饰)的优劣问题
当类成员是静态时,它不属于类的任何一个对象,存在于任何一个对象之外,不由类的构造函数初始化,而对象的创建需要调用构造函数,所以它无法计数到正在使用同一块空间的对象的个数;对象中不包含任何与静态数据成员有关的数据,而我们的计数_Count就与对象绑定在一起;普通成员不可以是不完全类型;非静态成员不能作为默认实参,它的值本身属于对象的一部分。
2.写时拷贝
由于释放内存空间,开辟内存空间时花费时间,因此,在我们在不需要写,只是读的时候就可以不用新开辟内存空间,就用浅拷贝的方式创建对象,当我们需要写的时候才去新开辟内存空间。这种方法就是写时拷贝。这也是一种解决由于浅拷贝使多个对象共用一块内存地址,调用析构函数时导致一块内存被多次释放,导致程序奔溃的问题。这种方法同样需要用到引用计数:使用int *保存引用计数;采用所申请的4个字节空间。
1 #include<iostream>
2 #include<stdlib.h>
3 using namespace std;
4 class String
5 {
6 public:
7 String(const char *pStr = "")
8 {
9 if (pStr == NULL)
10 {
11 _pStr = new char[1 + 4];
12 *((int*)pStr) = 1;
13 _pStr = (char*)(((int*)_pStr) + 1);
14 *_pStr = '\0';
15 }
16 else
17 {
18 _pStr = new char[my_strlen(pStr) + 1 + 4];
19 my_strcopy(_pStr, pStr);
20 *((int*)_pStr - 1) = 1;
21 }
22 }
23
24 String(const String& s)
25 :_pStr(s._pStr)
26 {
27 ++GetCount();
28 }
29
30 ~String()
31 {
32 Release();
33 }
34
35 String& operator=(const String& s)
36 {
37 if (this != &s)
38 {
39 Release();
40 _pStr = s._pStr;
41 --(GetCount());
42 }
43 return *this;
44 }
45
46 char& operator[](size_t index)//写时拷贝
47 {
48 if (GetCount() > 1) //当引用次数大于1时新开辟内存空间
49 {
50 char* pTem = new char[my_strlen(_pStr) + 1 + 4];
51 my_strcopy(pTem + 4, _pStr);
52 --GetCount(); //原来得空间引用计数器减1
53 _pStr = pTem + 4;
54 GetCount() = 1;
55 }
56 return _pStr[index];
57 }
58 const char& operator[](size_t index)const
59 {
60 return _pStr[index];
61 }
62 friend ostream& operator<<(ostream& output, const String& s)
63 {
64 output << s._pStr;
65 return output;
66 }
67 private:
68 int& GetCount()
69 {
70 return *((int*)_pStr - 1);
71 }
72 void Release()
73 {
74 if (_pStr && (0 == --GetCount()))
75 {
76 _pStr = (char*)((int*)_pStr - 1);
77 delete _pStr;
78 }
79 }
80
81 char *_pStr;
82 };
83
84 int main()
85 {
86 String s1;
87 String s2 = "1234";
88 String s3(s2);
89 s2[0] = '5';
90 String s4;
91 s3 = s4;
92 }
写时拷贝能减少不必要的内存操作,提高程序性能,但同时也是一把双刃剑,如果没按 stl 约定使用 String ,可能会导致极其严重的 bug ,而且通常是很隐蔽的,因为一般不会把注意力放到一个赋值语句。修改 String 数据时,先判断计数器是否为 1(为 1 代表没有其他对象共享内存空间),为 1 则可以直接使用内存空间(如上例中的 s2 ),否则触发写时拷贝,计数 -1 ,拷贝一份数据出来修改,并且新的内存计数器置 1 ; string 对象析构时,如果计数器为 1 则释放内存空间,否则计数也要 -1 。
写时拷贝存在的线程安全问题
线程安全就是多线程访问时,采用了加锁机制,当一个线程访问该类的某个数据时,进行保护,其他线程不能进行访问直到该线程读取完,其他线程才可使用。不会出现数据不一致或者数据污染。 线程不安全就是不提供数据访问保护,有可能出现多个线程先后更改数据造成所得到的数据是脏数据。String类写时拷贝可能存在的问题详见:http://blog.csdn.net/haoel/article/details/24077
String 类的实现(2)引用计数与写时拷贝的更多相关文章
- String类的实现(4)写时拷贝浅析
由于释放内存空间,开辟内存空间时花费时间,因此,在我们在不需要写,只是读的时候就可以不用新开辟内存空间,就用浅拷贝的方式创建对象,当我们需要写的时候才去新开辟内存空间.这种方法就是写时拷贝.这也是一种 ...
- 标准C++类std::string的内存共享和Copy-On-Write(写时拷贝)
标准C++类std::string的内存共享,值得体会: 详见大牛:https://www.douban.com/group/topic/19621165/ 顾名思义,内存共享,就是两个乃至更多的对象 ...
- 深拷贝&浅拷贝&引用计数&写时拷贝
(1).浅拷贝: class String { public: String(const char* str="") :_str(]) { strcpy(_str,str); } ...
- String写时拷贝实现
头文件部分 1 /* 版权信息:狼 文件名称:String.h 文件标识: 摘 要:对于上版本简易的String进行优化跟进. 改进 1.(将小块内存问题与大块分别对待)小内存块每个对象都有,当内存需 ...
- 转C++之stl::string写时拷贝导致的问题
前几天在开发某些数据结构到文件的 Dump 和 Load 功能的时候, 遇到的一个 bug . [问题复现] 问题主要出在 Load 过程中,从文件读取数据的时候, 直接使用 fread 的去操作 s ...
- String类的写时拷贝
#include<iostream>using namespace std; class String;ostream& operator<<(ostream & ...
- (转)C++——std::string类的引用计数
1.概念 Scott Meyers在<More Effective C++>中举了个例子,不知你是否还记得?在你还在上学的时候,你的父母要你不要看电视,而去复习功课,于是你把自己关在房间里 ...
- php 垃圾回收机制----写时复制和引用计数
PHP使用引用计数和写时复制来管理内存.写时复制保证了变量间复制值不浪费内存,引用计数保证了当变量不再需要时,将内存释放给操作系统. 要理解PHP内存管理,首先要理解一个概念----符号表. 符号表的 ...
- String 类的实现(3)引用计数实现String类
我们知道在C++中动态开辟空间时是用字符new和delete的.其中使用new test[N]方式开辟空间时实际上是开辟了(N*sizeof(test)+4)字节的空间.如图示其中保存N的值主要用于析 ...
随机推荐
- vue 学习笔记—Resource
1.首先是引入 或者用npm来安装 cnpm i vue-resource --save(推荐) 3.提供的api 关于请求写法: get(){ // get请求 this.$http.get( ...
- OGG初始化之使用Oracle Data Pump加载数据
此方法使用Oracle Data Pump实用程序来建立目标数据.将副本应用于目标后,您将记录副本停止的SCN.包含在副本中的交易将被跳过以避免完整性违规冲突.从流程起点,Oracle GoldenG ...
- 配置Oracle GoldenGate安全性
本章介绍如何配置Oracle GoldenGate安全性. 本章包括以下部分: Overview of Oracle GoldenGate Security Options Encrypting Da ...
- flirtlib 测试过程
一. 安装flirtlib 1. 安装必要的依赖库 Boost >= 1.36 (submodules math and graph) 这个有了 Qt4 (for the gui)这个也有了 Q ...
- 关于 DELPHI DATASNAP 的文章集
关于 DELPHI DATASNAP 的文章集: 1.墨者工作室 DataSnap基础 https://wenku.baidu.com/view/78715605cc1755270722088b. ...
- windows命令行获取时间
在写Windows批处理脚本时,常常需要获取系统日期.时间戳记,用作文件名.文件夹名.log等等. 本文介绍了如何获取自订的系统日期.时间戳记. 首先,在Windows中,系统日期由以下参数获得: % ...
- u3d发送邮件
http://gad.qq.com/article/detail/22810 https://www.douban.com/note/655356118/ http://gad.qq.com/arti ...
- Apollo 框架的剖析1
百度Apollo 自动驾驶开源模块分析 从今天开始研究学习apollo的源码,apollo 3.0源码. apollo 3.0的系统框图 文件目录简介 apollo根目录 ├── .github/IS ...
- Ex 2_34 线性3SAT..._第四次作业
- echo和重定向
命令: echo 作用: echo有重复的意思,会在终端中显示参数指定的文字,通常会和重定向联合使用 使用: echo 文字内容 例子: 在终端中显示hello echo hello 命令: > ...