输入一个字符串Str,输出Str里最长回文子串的长度。

回文串:指aba、abba、cccbccc、aaaa这种左右对称的字符串。

串的子串:一个串的子串指此(字符)串中连续的一部分字符构成的子(字符)串
例如 abc 这个串的子串:空串、a、b、c、ab、ac、bc、abc

收起

 

输入

输入Str(Str的长度 <= 1000)

输出

输出最长回文子串的长度L。

输入样例

daabaac

输出样例

5

----------------------------------------------------------------------------------------------------------
可以用dp[i][j]来表示S[i]到S[j]所表示的子串是否是回文子串,此处要分两种情况讨论:
1)如果S[i] == S[j],那么如果dp[i+1][j-1]是1,那就是回文子串,令dp[i][j]为1(dp[i][j]为1表示为回文子串,否则为0为不是回文子串)。
2)如果S[i] != S[j],那么令dp[i][j]=0,因为一定不是回文子串。
另外,面对边界的问题,dp[i][i]一定是回文子串,毕竟单个字母一定是回文的。dp[i][i+1]中,如果S[i] == S[i+1],就是回文子串,否则不为回文子串,此处判断两个字母是否构成回文子串。
C++代码:
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
const int maxn = ;
char str[maxn];
int dp[maxn][maxn];
int main() {
cin >> str;
int len = strlen(str);
int ans = ;
for (int i = ; i < len; i++) {
dp[i][i] = ;
if (str[i] == str[i + ]) {
dp[i][i + ] = ;
ans = ;
}
else {
dp[i][i + ] = ;
}
}
int j;
for (int L = ; L < len; L++) {
for (int i = ; i + L - < len; i++) {
j = i + L - ;
if (str[i] == str[j] && dp[i + ][j - ]) {
dp[i][j] = ;
ans = L;
}
}
}
cout << ans << endl;
system("pause");
return ;
}

(最长回文子串 线性DP) 51nod 1088 最长回文子串的更多相关文章

  1. 51nod 1088 最长回文子串 【中心拓展法/输出长度和路径】

    1088 最长回文子串 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 回文串是指aba.abba.cccbccc.aaaa这种左右对称的字符串. 输入一个字 ...

  2. 51nod 1088 最长回文子串

    1088 最长回文子串 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 回文串是指aba.abba.cccbccc.aaaa这种左右对称的字符串. 输入一 ...

  3. FatMouse's Speed HDU - 1160 最长上升序列, 线性DP

    #include<cstdio> #include<cstdlib> #include<cstring> #include<algorithm> usi ...

  4. 51NOD 1088 最长回文子串&1089 最长回文子串 V2(Manacher算法)

    回文串是指aba.abba.cccbccc.aaaa这种左右对称的字符串. 输入一个字符串Str,输出Str里最长回文子串的长度. Input 输入Str(Str的长度 <= 1000(第二题要 ...

  5. 回文词——线性dp

    #include<iostream> #include<cstdio> using namespace std; int n,f[5002][5002]; char str1[ ...

  6. 牛客网 Wannafly挑战赛12 删除子串(线性dp)

    题目描述 给你一个长度为n且由a和b组成的字符串,你可以删除其中任意的部分(可以不删),使得删除后的子串“变化”次数小于等于m次且最长. 变化:如果a[i]!=a[i+1]则为一次变化.(且新的字符串 ...

  7. NYOJ17 最长单调递增子序列 线性dp

    题目链接: http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=17 分析: i=1 dp[i]=1 i!=1 dp[i]=max(dp[j]+1) ...

  8. LG2679 「NOIP2015」子串 线性DP

    问题描述 LG2679 题解 设\(opt[i][j]\)代表A串前\(i\)个,匹配\(B\)串前\(j\)个,选择了\(k\)个子串的方案数. 转移用前缀和优化一下. \(\mathrm{Code ...

  9. 【基础练习】【线性DP】codevs1576 最长严格上升子序列题解

    连题目都不放了,就是标题中说的那样.裸题 于是直接上代码 暑假要来了 好好学习 --炉火照天地,红星乱紫烟. 赧郎明月夜.歌曲动寒川.

随机推荐

  1. Java多线程之静态代理

    package org.study2.javabase.ThreadsDemo.staticproxy; /** * @Date:2018-09-18 静态代理 设计模式 * 1.真实角色 * 2.代 ...

  2. ES 6 系列 - 变量声明

    let 和 const let 声明 (一)基本用法 let 声明的变量只在块级作用域内有效,出了该块则报错,最常见且适合的地方在 for 循环中: var a = []; for (var i = ...

  3. opencv imdecode和imencode用法

    主要是对内存数据自动编解码 string fname = "D:/image.jpg"; //! 以二进制流方式读取图片到内存 FILE* pFile = fopen(fname. ...

  4. cuda编程-矩阵乘法(2)

    采用shared memory加速 代码 #include <stdio.h> #include <stdlib.h> #include <math.h> #inc ...

  5. ubuntu 14.04zabbix的安装

    开始安装 64位  Ubuntu 14.04.5 LTS \n \l 安装zabbix的源,以下操作在root下进行 # wget http://repo.zabbix.com/zabbix/3.0/ ...

  6. 爬虫_拉勾网(解析ajax)

    拉勾网反爬虫做的比较严,请求头多添加几个参数才能不被网站识别 找到真正的请求网址,返回的是一个json串,解析这个json串即可,而且注意是post传值 通过改变data中pn的值来控制翻页 job_ ...

  7. dll 修复....

    之前在安装时总是会碰到缺少什么dll文件,总是头疼的要命,这次很幸运的在网上搜到了这个神奇的小玩意,只需要运行就能够修复缺少的所有的dll文件,所以在这小小的分享一下. 链接:https://pan. ...

  8. 【CF1097F】Alex and a TV Show(bitset)

    [CF1097F]Alex and a TV Show(bitset) 题面 洛谷 CF 题解 首先模\(2\)意义下用\(bitset\)很明显了. 那么问题在于怎么处理那个\(gcd\)操作. 然 ...

  9. Codeforces | CF1028C 【Rectangles】

    (这道题太简单啦...虽说我锤了一上午都没过...我能说这道题和\(CF1029C\)算是同一道题吗...) 按照时间顺序来说...\(CF1029\)在\(CF1028\)前面(而且\(CF1029 ...

  10. 「SCOI2015」小凸解密码 解题报告

    「SCOI2015」小凸解密码 题意:给一个环,定义一段连续的极长\(0\)串为\(0\)区间,定义一个位置的离一个\(0\)区间的距离为这个位置离这个区间中\(0\)的距离的最小值,每次询问一个位置 ...