MT【267】第一次很重要
\begin{equation*}
\textbf{已知}x_1,x_2<\pi,x_{n+1}=x_n+\left\{ \begin{aligned}
sin x_n &,x_n>x_{n+1}\\
cos x_n&,x_n\le x_{n+1}\\
\end{aligned} \right.
\end{equation*}
证明:$ x_n<\dfrac{3\pi}{2}$

假设存在$n_0,x_{n_0}<\dfrac{3\pi}{2},x_{n_0+1}\ge\dfrac{3\pi}{2},\because x_{n_0+1}-x_{n_0}\le1,\therefore x_{n_0}\ge x_{n_0+1}-1\ge \dfrac{3\pi}{2}-1>\pi,$
$\therefore \pi<x_{n_0}<\dfrac{3\pi}{2}$但此时由$x_{n_0+1}$ 的定义知道$x_{n_0+1}<x_{n_0}$ 与假设矛盾.所以假设不成立.
MT【267】第一次很重要的更多相关文章
- MT【268】投篮第一次很重要
已知 $r_1=0,r_{100}=0.85,(r_k$ 表示投 k 次投中的概率.)求证:(1)是否存在$n_0$使得$r_{n_0}=0.5$ (2)是否存在$n_1$使得$r_{n_1}=0.8 ...
- .NET HttpWebRequest/WebClient网络请求第一次很慢解决方案
不使用代理: <?xml version="1.0" encoding="utf-8" ?> <configuration> <s ...
- MT【123】利用第一次的技巧
已知 \(r_1=0,r_{100}=0.85,(r_k\) 表示投 k 次投中的概率.) 求证:(1)是否存在\(n_0\)使得\(r_{n_0}=0.5\) (2)是否存在\(n_1\)使得\(r ...
- mac osx 启动wireshark闪退
wireshark启动会提示安装x11 去x11地址安装后 启动还是闪退 原来是姿势不对 这样才行~~ 这一步 这个路径一定要对!路径一定要对!路径一定要对! 然后报错不用管它,如果没反应了,就继续等 ...
- 制作C/C++动态链接库(dll)若干注意事项
一.C\C++ 运行时库编译选项简单说明 问题:我的dll别人没法用 运行时库是个很复杂的东西,作为开发过程中dll制作需要了解的一部分,这里主要简单介绍一下如何选择编译选项. 在我们的开发过程中时常 ...
- WPF学习(5)依赖属性
今天我们来学习WPF一个比较重要的概念:依赖属性.这里推荐大家看看周永恒大哥的文章,讲的确实很不错.我理解的没那么深入,只能发表一下自己的浅见.提到依赖属性,不得不说我们经常使用的传统的.net属性, ...
- [ZooKeeper.net] 1 模仿dubbo实现一个简要的http服务的注册 基于webapi
今天来试着模仿下dubbo实现一个简要的http服务的注册,虽说是模仿不过是很廉价的那种,只是模仿了一点点点...... 先放上demo目录结构: 开头还是把ZooKeeper的一些简要介绍搬过来看看 ...
- EF查询百万级数据的性能测试
一.起因 个人还是比较喜欢EF的,毕竟不用写Sql,开发效率高,操作简单,不过总是听人说EF的性能不是很好,也看过别人做的测试,但是看了就以为真的是那样.但是实际上到底是怎么样,说实话我真的不知道. ...
- C#、Java中的一些小功能点总结(持续更新......)
前言:在项目中,有时候一些小的功能点,总是容易让人忽略,但是这些功能加在项目中往往十分的有用,因此笔者在这里总结项目中遇到的一些实用的小功能点,以备用,并持续更新...... 1.禁用DataGrid ...
随机推荐
- [2019BUAA软工助教]结对编程 - 小结
[2019BUAA软工助教]结对编程 - 小结 一.评分规则 博客 博客共五十分 序号 要求 分值 1 在文章开头给出Github项目地址 1 2 在开始实现程序之前,在下述PSP表格记录下你估计将在 ...
- Python2和Python3中urllib库中urlencode的使用注意事项
前言 在Python中,我们通常使用urllib中的urlencode方法将字典编码,用于提交数据给url等操作,但是在Python2和Python3中urllib模块中所提供的urlencode的包 ...
- 【学习总结】Git学习-参考廖雪峰老师教程一-Git简介
学习总结之Git学习-总 目录: 一.Git简介 二.安装Git 三.创建版本库 四.时光机穿梭 五.远程仓库 六.分支管理 七.标签管理 八.使用GitHub 九.使用码云 十.自定义Git 期末总 ...
- Windows和Linux的Jmeter分布式集群压力测试
Windows的Jmeter分布式集群压力测试 原文:https://blog.csdn.net/cyjs1988/article/details/80267475 在使用Jmeter进行性能测试时, ...
- 使用fetch代替ajax请求 post传递方式
let postData = {a:'b'}; fetch('http://data.xxx.com/Admin/Login/login', { method: 'POST', mode: 'cors ...
- jquery on绑定事件
描述:给一个或多个元素(当前的或未来的)的一个或多个事件绑定一个事件处理函数.(1.7版本开始支持,是 bind().live() 和 delegate() 方法的新的替代品) 语法:.on( eve ...
- [转帖]nginx服务器安装及配置文件详解
nginx服务器安装及配置文件详解 http://seanlook.com/2015/05/17/nginx-install-and-config/ 发表于 2015-05-17 | 更新于: 2 ...
- 1065. 我的日程安排表 I
描述 实现MyCalendar类来存储您的活动. 如果新添加的活动没有重复,则可以添加. 你的类将有方法book(int start,int end). 这代表左闭右开的间隔[start,end)有了 ...
- 1244. Minimum Genetic Mutation
描述 A gene string can be represented by an 8-character long string, with choices from "A", ...
- 【Java基础】for循环实现在控制台打印水仙花数
代码: /* * 需求:在控制台输出所有的”水仙花数” * * 分析: * 什么是水仙花数呢? * 所谓的水仙花数是指一个三位数,其各位数字的立方和等于该数本身. * 举例:153就是一个水仙花数. ...