TensorFlow学习笔记之--[tf.clip_by_global_norm,tf.clip_by_value,tf.clip_by_norm等的区别]
以下这些函数可以用于解决梯度消失或梯度爆炸问题上。
1. tf.clip_by_value
tf.clip_by_value(
t,
clip_value_min,
clip_value_max,
name=None
)
Returns:A clipped Tensor.
输入一个张量t,把t中的每一个元素的值都压缩在clip_value_min和clip_value_max之间。小于min的让它等于min,大于max的元素的值等于max。
例子:
import tensorflow as tf;
import numpy as np;
A = np.array([[1,1,2,4], [3,4,8,5]])
with tf.Session() as sess:
print sess.run(tf.clip_by_value(A, 2, 5))
>>>
[[2 2 2 4]
[3 4 5 5]]
2. tf.clip_by_norm
tf.clip_by_norm(
t,
clip_norm,
axes=None,
name=None
)
Returns:A clipped Tensor.
指对梯度进行裁剪,通过控制梯度的最大范式,防止梯度爆炸的问题,是一种比较常用的梯度规约的方式。
- t: 输入tensor,也可以是list
- clip_norm: 一个具体的数,如果\(l_2 \, norm(t)≤clip\_norm\), 则t不变化;否则\(t=\frac{t*clip\_norm}{l_2norm(t)}\)
注意上面的t可以是list,所以最后做比较的时候是将t的二范式和clip_norm作比较。看下面的例子:
a = np.array([2.,5.])
b = tf.clip_by_norm(a, 5)
with tf.Session() as sess:
print(sess.run(tf.norm(a)))
print(sess.run(b))
>>>
5.3851647
[1.8569534 4.6423836]
3. tf.clip_by_average_norm
tf.clip_by_average_norm(
t,
clip_norm,
name=None
)
Returns:A clipped Tensor.
其实和tf.clip_by_norm类似,只不过把\(l_2\,norm(t)\)改成了\(l_2\,norm_avg(t)=\frac{1}{n} \, l_2\,norm(t)\),\(n\)表示t的元素个数。
例子
a = np.array([3, 4]).astype('float32')
e = tf.clip_by_average_norm(a, 1)
with tf.Session() as sess:
print(sess.run(e))
>>>
[1.2 1.6]
验证一下:\(\frac{3*1}{\frac{1}{2}\sqrt{3^2+4^2}}=\frac{3}{2.5}=1.2\)。
4. tf.clip_by_global_norm
tf.clip_by_global_norm(
t_list,
clip_norm,
use_norm=None,
name=None
)
Returns:
list_clipped: A list of Tensors of the same type as list_t.global_norm: A 0-D (scalar) Tensor representing the global norm.
注意这里的t_list是a tuple or list of tensors。
global_norm计算公式如下:
\]
如果global_norm>clip_norm,则t_list中所有元素若如下计算:
\]
TensorFlow学习笔记之--[tf.clip_by_global_norm,tf.clip_by_value,tf.clip_by_norm等的区别]的更多相关文章
- TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]
I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自 ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...
- Tensorflow学习笔记2:About Session, Graph, Operation and Tensor
简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...
- Tensorflow学习笔记2019.01.22
tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...
- Tensorflow学习笔记2019.01.03
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...
- 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...
- 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...
- tensorflow学习笔记(4)-学习率
tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning ...
- tensorflow学习笔记(3)前置数学知识
tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个 b为4* ...
- tensorflow学习笔记(2)-反向传播
tensorflow学习笔记(2)-反向传播 反向传播是为了训练模型参数,在所有参数上使用梯度下降,让NN模型在的损失函数最小 损失函数:学过机器学习logistic回归都知道损失函数-就是预测值和真 ...
随机推荐
- KMP之计算Next数组
KMP的Next数组:模式串的前缀与后缀的“相交”长度 KMP算法步骤: 1.先算next数组 2.若失配(此时模式串下标为j),利用Next数组求出失配后滑动的新位置 a.Next[j] \geq ...
- MYSQL Innodb逻辑存储结构
转载于网络 这几天在读<MySQL技术内幕 InnoDB存储引擎>,对 Innodb逻辑存储结构有了些了解,顺便也记录一下: 从InnoDB存储引擎的逻辑存储结构看,所有数据都被逻辑地存放 ...
- mysql写shell小技巧
set global general_log=on;set @file=0x653A2F2F7777772F2F782E706870;set global general_log_file=@file ...
- 【矢量绘图工具】Adobe Illustrator (AI) CC 2019 for Mac 23.0
以上图片来源于互联网分享,如涉及版权问题请联系作者删除. 文章素材来源:风云社区(www.scoee.com) 下载地址:风云社区(www.scoee.com) [简介] Adobe illust ...
- JavaSE_坚持读源码_ClassLoader对象_Java1.7
ClassLoader java.lang public abstract class ClassLoader extends Object //类加载器的责任就是加载类,说了跟没说一样 A clas ...
- Hadoop记录-变更
1.安装salt-minion sed -i 's/^#//g' /etc/yum.repos.d/centos7.4.repo sed -i 's/enabled=0/enabled=1/g' /e ...
- java内部类的作用
java内部类的作用 定义: 放在一个类的内部的类我们就叫内部类. 二. 作用: 1.内部类可以很好的实现隐藏 一般的非内部类,是不允许有 private 与protected权限的,但内部类可以 2 ...
- [Android] Android 异步定时任务实现的三种方法(以SeekBar的进度自动实现为例)
[Android] Android 定时异步任务实现的三种方法(以SeekBar的进度自动实现为例) 一.采用Handler与线程的sleep(long)方法 二.采用Handler与timer及Ti ...
- impala系列: 基本命令和jdbc连接
--======================= 使用impala-shell 登录 --======================= impala-shell --auth_creds_ok_i ...
- springboot(十七):过滤器(Filter)和拦截器(Interceptor)
概述 在做web开发的时候,过滤器(Filter)和拦截器(Interceptor)很常见,通俗的讲,过滤器可以简单理解为“取你所想取”,忽视掉那些你不想要的东西:拦截器可以简单理解为“拒你所想拒”, ...