描述

Background
Hello Earthling. We're from the planet Regetni and need your help to make lots of money. Maybe we'll even give you some of it.
You
see, the problem is that in our world, everything is about integers.
It's even enforced by law. No other numbers are allowed for anything.
That said, it shouldn't surprise you that we use integer coordinate
systems to plan our cities. So far only axis-aligned rectangular plots
of land have been sold, but our professor Elgnairt recently had the
revolutionary idea to sell triangular plots, too. We believe that the
high society will love this concept and it'll make us rich.
Unfortunately
the professor patented his idea and thus we can't just do it. We need
his permission and since he's a true scientist, he won't give it to us
before we solve some damn riddle. Here's where you come in,because we
heard that you're a genius.

Problem
The professor's riddle
goes like this: Given some possible corners for the triangles, determine
how many triangles with integral size can be built with them.
Degenerated triangles with empty area (i.e. lines) have to be counted,
too, since 0 is an integer. To be more precise, count the number of
triangles which have as corners three different points from the input
set of points. All points in a scenario will be distinct, i.e. there
won't be duplicates. Here are some examples:


Example
a) shows a triangle with integral area (namely 3), b) shows one with
non-integral size, c) shows a degenerated triangle with empty area (i.e.
zero, so count it!), d) shows four points of which you can choose any
three to build an integral area triangle and e) shows four points where
you can't build any integral area triangles at all.
Hint: The area A of a triangle with corners (x1, y1), (x2, y2) and (x3, y3) can be computed like this:
A=|x1y2 - y1x2 + x2y3 - y2x3 + x3y1 - y3x1|/2
Try to make clever use of this formula.

输入

The
first line contains the number of scenarios. For each scenario, there
is one line containing first the number N of distinct points in that
scenario (0 <= N <= 10000) and after that N pairs of integers,
each pair describing one point (xi, yi) with -100000 <= xi, yi <=
100000. All these numbers are separated by single blanks.

输出

Start
the output for every scenario with a line containing "Scenario #i:",
where i is the number of the scenario starting at 1. Then print a single
line containing the number of triangles with integral area whose three
distinct corners are among the points given. Terminate the output for
each scenario with a blank line.

样例输入

6
3 0 0 2 0 1 -3
3 0 0 2 1 1 -3
3 0 0 2 2 3 3
4 0 0 2 0 0 2 2 2
4 0 0 1 0 0 1 1 1
9 0 0 0 1 0 2 1 0 1 1 1 2 2 0 2 1 2 2

样例输出

Scenario #1:
1

Scenario #2:
0

Scenario #3:
1

Scenario #4:
4

Scenario #5:
0

Scenario #6:
48
题意

给你N个点,求三角形面积为整数的总数

题解

A=|x1y2 - y1x2 + x2y3 - y2x3 + x3y1 - y3x1|/2

要使公式为整数,|x1y2 - y1x2 + x2y3 - y2x3 + x3y1 - y3x1|为偶

三个点P(x1,y1),Q(x2,y2),C(x3,y3)

可以发现上面的公式和PQC三点的x和y的奇偶性有关

令0=x偶y偶,1=x偶y奇,2=x奇y偶,3=x奇y奇。

打表完后利用组合数求个和。

代码

 #include<bits/stdc++.h>
using namespace std; struct point
{
int p,q,c;
bool operator<(const point &d)const{
if(p<d.p)return true;
else if(p==d.p)
{
if(q<d.q)return true;
else if(q==d.q)
{
if(c<d.c)return true;
}
}
return false;
}
};
set<point>v;
void cs()
{
pair<int,int>po[];
po[]={,};
po[]={,};
po[]={,};
po[]={,};
for(int p=;p<;p++)
for(int q=;q<;q++)
for(int c=;c<;c++)
{
int x1,x2,x3,y1,y2,y3;
x1=po[p].first;y1=po[p].second;
x2=po[q].first;y2=po[q].second;
x3=po[c].first;y3=po[c].second;
if((x1*y2-y1*x2+x2*y3-y2*x3+x3*y1-y3*x1)%==)
{
int d[];
d[]=p;
d[]=q;
d[]=c;
sort(d,d+);
v.insert({d[],d[],d[]});
}
}
}
long long C(int n,int m)
{
if(m>n)return ;
long long sum=;
for(int i=;i<=m;i++)
sum=sum*(n-i+)/i;
return sum;
}
int main()
{
cs();
int t,n,ca=;
scanf("%d",&t);
while(t--)
{
int d[]={};
scanf("%d",&n);
for(int i=;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
if(x%==&&y%==)d[]++;
if(x%==&&y%!=)d[]++;
if(x%!=&&y%==)d[]++;
if(x%!=&&y%!=)d[]++;
}
long long sum=;
for(auto x:v)
{
int p=x.p;
int q=x.q;
int c=x.c;
printf("%d %d %d\n",p,q,c);
int f[]={};
f[p]++;f[q]++;f[c]++;
sum+=C(d[],f[])*C(d[],f[])*C(d[],f[])*C(d[],f[]);
}
printf("Scenario #%d:\n%lld\n\n",ca++,sum);
}
return ;
}

TZOJ 2519 Regetni(N个点求三角形面积为整数总数)的更多相关文章

  1. UVa 11437:Triangle Fun(计算几何综合应用,求直线交点,向量运算,求三角形面积)

    Problem ATriangle Fun Input: Standard Input Output: Standard Output In the picture below you can see ...

  2. hdu 4709:Herding(叉积求三角形面积+枚举)

    Herding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  3. Maximal Area Quadrilateral CodeForces - 340B || 三点坐标求三角形面积

    Maximal Area Quadrilateral CodeForces - 340B 三点坐标求三角形面积(可以带正负,表示向量/点的不同相对位置): http://www.cnblogs.com ...

  4. hdu4709求三角形面积

    Herding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  5. HDU 2036 叉乘求三角形面积

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s) ...

  6. golang实现已知三角形三点坐标,求三角形面积

    代码如下: func GetTriangleAreaByVector(x vector.Vector3,y vector.Vector3,z vector.Vector3) float64 { //根 ...

  7. 【C语言】已知三角形三边长,求三角形面积

    一. 数学基础: 已知三角形的三边,计算三角形面积,需要用到海伦公式: 即p=(a+b+c)/2 二. 算法: 输入三个边长,套用海伦公式计算面积,并输出. 可以先判断是否可以构成三角形,即任意两边之 ...

  8. java求三角形面积以及周长---封装

    /*时间: 2012-10-08作者: 烟大程序要求: 1.封装一类三角形对象Triangle,该类对象具有三条边的属性, 具有初始化三角形的功能.修改边长的功能.判断三条边能否构成三角形的功能. 求 ...

  9. POJ 2954 /// 皮克定理+叉积求三角形面积

    题目大意: 给定三角形的三点坐标 判断在其内部包含多少个整点 题解及讲解 皮克定理 多边形面积s = 其内部整点in + 其边上整点li / 2 - 1 那么求内部整点就是 in = s + 1 - ...

随机推荐

  1. CSS3 之 Media(媒体查询器)

    1.响应式Media(媒体查询器) (1)<link rel=“stylesheet” media=“screen and (max-width: 600px)” href=“small.css ...

  2. 远程连接mysql8.0,Error No.2058 Plugin caching_sha2_password could not be loaded

    通过本地去连接远程的mysql时报错,原因时mysql8.0的加密方法变了. mysql8.0默认采用caching_sha2_password的加密方式 第三方客户端基本都不支持这种加密方式,只有自 ...

  3. 在Spring Boot中使用 @ConfigurationProperties 注解

    但 Spring Boot 提供了另一种方式 ,能够根据类型校验和管理application中的bean. 这里会介绍如何使用@ConfigurationProperties.继续使用mail做例子. ...

  4. 关于RandomAccessFile一个坑!!!!

    最近正好遇到了使用RandomAccessFile做断点下载的情况,被一个问题坑了好多次 本来的代码: RandomAccessFile randomAccessFile = new RandomAc ...

  5. redis在实践中的一些常见问题以及优化思路

    1.fork耗时导致高并发请求延时 RDB和AOF的时候,其实会有生成RDB快照,AOF rewrite,耗费磁盘IO的过程,主进程fork子进程 fork的时候,子进程是需要拷贝父进程的空间内存页表 ...

  6. leetCode70.爬楼梯

    假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解释: 有两 ...

  7. 如何创建数据库以及MySQL增删改查命令的简单运用

    在已经安装好MySQL的前提下 1.在Windows打开命令提示符窗口,输入命令启动MySQL命令行工具并登入root用户:mysql -h localhost -u root -p 2.输入密码后, ...

  8. nodeJs 代码热更新

    在开发node过程中,每次修改代码都需要重新启动服务,是一件很抓狂的事情 使用nodemon热加载可以帮我们很好的解决这一问题 1. 安装 npm install nodemon -g 2. 修改np ...

  9. 使用spring-session共享springmvc项目的session

    一.说在前面 spring mvc项目,使用nginx,tomcat部署. 之前没做session共享,而nginx采用sticky模块进行分发. 但发现有时不能正确地指向同一台服务器,从而导致ses ...

  10. 回溯法 17. Letter Combinations of a Phone Number

    class Solution { public: map<char,string> dict; vector<string> letterCombinations(string ...