PlainElastic.Net

PlainElastic.Net

The really plain Elastic Search .Net client.

Plain Idea

Usually connectivity clients built using BLACK BOX principle: there is a client interface and some unknown magic behind it.
(call of the client method internally generate some commands and queries to external system, get responses, somehow process them and then retrieve result to user)
As the result user hardly can debug connectivity issues or extend client functional with missed features.

The main Idea of PlainElastic.Net is to be a GLASS BOX. e.g. provide a full control over connectivity process to user.

Installation

NuGet support

You can find PlainElastic.Net in NuGet Gallery or just install it using VS NuGet Packages Manager
Or just type Install-Package PlainElastic.Net in Package Manager Console.

Building from Source

The easiest way to build PlainElastic.Net from source is to clone the git repository on GitHub and build the PlainElastic.Net solution.

git clone git://github.com/Yegoroff/PlainElastic.Net.git

The solution file PlainElastic.Net.sln is located in the root of the repo.

How Its works

1) The only thing you need to connect to ES is a HTTP connection.

  var connection  = new ElasticConnection();

2) Than you can declare sting with ES command

  string command = "http://localhost:9200/twitter/user/test";

3) And JSON string with data

  string jsonData = "{ \"name\": \"Some Name\" }";

4) And pass them using connection to ES.

  string response = connection.Put(command, jsonData);

5) Get JSON string response and analyze it.

  if(response.Contains("\"ok\":true")) {
... // do something useful
}

So, how PlainElastic can help you here?

  // 1. It provides ES HTTP connection
var connection = new ElasticConnection("localhost", 9200); // 2. And sophisticated ES command builders:
string command = Commands.Index(index: "twitter", type: "user", id: test) // 3. And gives you the ability to serialize your objects to JSON:
var serializer = new JsonNetSerializer();
var tweet = new Tweet { Name = "Some Name" };
string jsonData = serializer.ToJson(tweet); // 4. Then you can use appropriate HTTP verb to execute ES command:
string response = connection.Put(command, jsonData); // 5. And then you can deserialize operation response to typed object to easily analyze it:
IndexResult indexResult = serializer.ToIndexResult(result);
if(indexResult.ok) {
... // do something useful.
} // 6. And even more: Typed mapping and condition-less query builders.

Concepts

No addition abstraction upon native Elastic Search query and mapping syntax.

This eliminates requirements to read both ES and driver's manuals, and also it allows you not to guess how driver will generate actual ES query when you construct it using driver's Query DSL.
So if you want to apply some ES query - all you need is to read ES Query DSL documentation

All you need is strings.

Let's take some ES query sample in a format that you will see in ES documentation:

$ curl -XGET http://localhost:9200/twitter/tweet/_search -d '{
"query" : {
"term" : { "User": "somebody" }
}
}'

In PlainElastic.Net this could be done using:

var connection  = new ElasticConnection("localhost", 9200);
string command = new SearchCommand("twitter", "tweet"); // This will generate: twitter/tweet/_search
string query = new QueryBuilder<Tweet>() // This will generate:
.Query(q => q // { "query": { "term": { "User": "somebody" } } }
.Term(t => t
.Field(tweet=> tweet.User).Value("somebody")
)
).Build();
string result = connection.Get( command, query); // Than we can convert search results to typed results
var serializer = new JsonNetSerializer();
var foundTweets = serializer.ToSearchResults<Tweet>(result);
foreach (Tweet tweet in foundTweets.Documents)
{
...
}

As you can see all parameters passed to and returned from Get HTTP verb execution are just strings.
This gives us complete control over generated commands and queries. You can copy/paste and debug them in any ES tool that allows to execute JSON queries (e.g. CURL or ElasticHead ).

Command building

PlainElastic.Net commands represent URL part of ElasticSearch requests.
All commands have corresponding links to ES documentation in their XML comments, so you can use these links to access detailed command description.

Most of the commands have Index ,Type and Id constructor parameters, (these parameters forms address part) all other options could be set using fluent builder interface.

string indexCommand = new IndexCommand(index: "twitter", type: "tweet", id: "10")
.Routing("route_value")
.Refresh();

There is also a Commands class that represents a command registry and allows you to easily build commands, without necessity to remember command class name.

string searchCommand = Commands.Index(index: "twitter", type: "tweet", id: "10")
.Routing("route_value")
.Refresh();

Indexing

ES documentation: http://www.elasticsearch.org/guide/reference/api/index_.html

The easiest way to index document is to serialize your document object to JSON and pass it to PUT index command:

var connection  = new ElasticConnection("localhost", 9200);
var serializer = new JsonNetSerializer(); var tweet = new Tweet { User = "testUser" };
string tweetJson = serializer.ToJson(tweet); string result = connection.Put(new IndexCommand("twitter", "tweet", id: "10"), tweetJson); // Convert result to typed index result object.
var indexResult = serializer.ToIndexResult(result);

Note: You can specify additional indexing parameters such as Parent or Refresh in IndexCommand builder.

string indexCommand = new IndexCommand("twitter", "tweet", id: "10").Parent("5").Refresh();

Bulk Operations

ES documentation: http://www.elasticsearch.org/guide/reference/api/bulk.html

There are two options to build Bulk operations JSONs. First is to build all Bulk operations at once:

IEnumerable<Tweet> tweets = new List<Tweet>();

string bulkCommand = new BulkCommand(index: "twitter", type: "tweet");

string bulkJson =
new BulkBuilder(serializer)
.BuildCollection(tweets,
(builder, tweet) => builder.Index(data: tweet, id: tweet.Id)
// You can apply any custom logic here
// to generate Indexes, Creates or Deletes.
); string result = connection.Post(bulkCommand, bulkJson); //Parse bulk result;
BulkResult bulkResult = serializer.ToBulkResult(result);
...

Second allows you to build Bulk operations in batches of desired size.
This will prevent from constructing huge in-memory strings, and allows to process input collection on-the-fly, without enumerating them to the end.

IEnumerable<Tweet> tweets = new List<Tweet>();

string bulkCommand = new BulkCommand(index: "twitter", type: "tweet");

IEnumerable<string> bulkJsons =
new BulkBuilder(serializer)
.PipelineCollection(tweets,
(builder, tweet) => builder.Index(data: tweet, id: myObject.Id))
.JoinInBatches(batchSize: 10); // returns deferred IEnumerable of JSONs
// with at most 10 bulk operations in each element,
// this will allow to process input elements on-the-fly
// and not to generate all bulk JSON at once foreach(string bulk in bulkJsons )
{
// Send bulk batch.
string result = connection.Post(bulkCommand, bulk); // Parse bulk batch result.
BulkResult bulkResult = serializer.ToBulkResult(result);
...
}

Note: You can build not only Index Bulk operations but also Create and Delete.

IEnumerable<string> bulkJsons =
new BulkBuilder(serializer)
.PipelineCollection(tweets,
(builder, tweet) => {
switch (tweet.State) {
case State.Added:
builder.Create(data: tweet, id: myObject.Id))
case State.Updated:
builder.Index(data: tweet, id: myObject.Id))
case State.Deleted:
builder.Delete(id: myObject.Id))
}
});

Queries

ES documentation: http://www.elasticsearch.org/guide/reference/query-dsl/

The main idea of QueryBuilder is to repeat JSON syntaxes of ES queries.
Besides this it provides intellisense with fluent builder interface 
and property references:

for single property .Field(tweet => tweet.Name) 
for collection type property .FieldOfCollection(collection: user => user.Tweets, field: tweet => tweet.Name)

So let’s see how it works.

We have http://localhost:9200/twitter index with type user. Below we add sample "user" document to it:

PUT http://localhost:9200/twitter/user/1
{
"Id": 1,
"Active": true,
"Name": "John Smith",
"Alias": "Johnnie"
}

Now let's create some synthetic JSON query to get this document:

POST http://localhost:9200/twitter/user/_search
{
"query": {
"bool": {
"must": [
{
"query_string": {
"fields": ["Name","Alias"], "query" : "John"
}
},
{
"prefix" : {
"Alias": { "prefix": "john" }
}
}
]
}
},
"filter": {
"term": { "Active": "true" }
}
}

Assuming that we have defined class User:

class User
{
public int Id { get; set; }
public bool Active { get; set; }
public string Name { get; set; }
public string Alias { get; set; }
}

This query could be constructed using:

string query = new QueryBuilder<User>()
.Query(q => q
.Bool(b => b
.Must(m => m
.QueryString(qs => qs
.Fields(user => user.Name, user => user.Alias).Query("John")
)
.Prefix(p => p
.Field(user => user.Alias).Prefix("john")
)
)
)
)
.Filter(f => f
.Term(t => t
.Field(user=> user.Active).Value("true")
)
)
.BuildBeautified();

And then to execute this query we can use the following code:

var connection = new ElasticConnection("localhost", 9200);
var serializer = new JsonNetSerializer(); string result = connection.Post(Commands.Search("twitter", "user"), query);
User foundUser = serializer.ToSearchResult<User>(result).Documents.First();

See Query Builder Gist for complete sample.

Condition-less Queries:

Its usual case when you have a bunch of UI filters to define full-text query, price range filter, category filter etc.
None of these filters are mandatory, so when you construct final query you should use only defined filters. This brings ugly conditional logic to your query-building code.

So how PlainElastic.Net addresses this?

The idea behind is really simple:
If provided condition value is null or empty - the corresponding query or filter will not be generated.

Expression

string query = new QueryBuilder<User>()
.Query(q => q
.QueryString(qs => qs
.Fields(user => user.Name, user => user.Alias).Query("")
)
)
.Filter(f => f
.Term(t => t
.Field(user=> user.Active).Value(null)
)
)
.Build();

will generate "{}" string that will return all documents from the index.

The real life usage sample: 
Let's say we have criterion object that represents UI filters:

class Criterion
{
public string FullText { get; set; }
public double? MinPrice { get; set; }
public double? MaxPrice { get; set; }
public bool? Active { get; set; }
}

So our query builder could look like this:

public string BuildQuery(Criterion criterion)
{
string query = new QueryBuilder<Item>()
.Query(q => q
.QueryString(qs => qs
.Fields(item => item.Name, item => item.Description)
.Query(criterion.FullText)
)
)
.Filter(f => f
.And(a => a
.Range(r => r
.Field(item => item.Price)
// AsString extension allows to convert nullable values to string or null
.From(criterion.MinPrice.AsString())
.To(criterion.MaxPrice.AsString())
)
.Term(t => t
.Field(user => user.Active).Value(criterion.Active.AsString())
)
)
).BuildBeautified();
}

And that's all - no ugly ifs or switches.
You just write query builder using most complex scenario, and then it will build only defined criterions.

If we call this function with BuildQuery( new Criterion { FullText = "text" }) then it will generate:

{
"query": {
"query_string": {
"fields": ["Name", "Description"],
"query": "text"
}
}
}

so it omits all not defined filters.

See Condion-less Query Builder Gist for complete sample.

Facets

ES documentation: http://www.elasticsearch.org/guide/reference/api/search/facets/index.html

For now only Terms facet, Terms Stats facet, Statistical facet, Range facet and Filter Facet supported.

You can construct facet queries using the following syntax:

public string BuildFacetQuery(Criterion criterion)
{
return new QueryBuilder<Item>()
.Query(q => q
.QueryString(qs => qs
.Fields(item => item.Name, item => item.Description)
.Query(criterion.FullText)
)
) // Facets Part
.Facets(facets => facets
.Terms(t => t
.FacetName("ItemsPerCategoryCount")
.Field(item => item.Category)
.Size(100)
)
)
.BuildBeautified();
}

To read facets result you need to deserialize it to SearchResults and access its .facet property:

  // Build faceted query with FullText criterion defined.
string query = BuildFacetQuery(new Criterion { FullText = "text" });
string result = connection.Post(Commands.Search("store", "item"), query); // Parse facets query result
var searchResults = serializer.ToSearchResult<Item>(result);
var itemsPerCategoryTerms = searchResults.facets.Facet<TermsFacetResult>("ItemsPerCategoryCount").terms; foreach (var facetTerm in itemsPerCategoryTerms)
{
Console.WriteLine("Category: {0} Items Count: {1}".F(facetTerm.term, facetTerm.count));
}

See Facet Query Builder Gist for complete sample.

Highlighting

ES documentation: http://www.elasticsearch.org/guide/reference/api/search/highlighting/

You can construct highlighted queries using the following syntax:

string query = new QueryBuilder<Note>()
.Query(q => q
.QueryString(qs => qs
.Fields(c => c.Caption)
.Query("Note")
)
)
.Highlight(h => h
.PreTags("<b>")
.PostTags("</b>")
.Fields(
f => f.FieldName(n => n.Caption).Order(HighlightOrder.score),
f => f.FieldName("_all")
)
)
.BuildBeautified();

To get highlighted fragments you need to deserialize results to SearchResult<T> and access highlight property of each hit:

// Execute query and deserialize results.
string results = connection.Post(Commands.Search("notes", "note"), query);
var noteResults = serializer.ToSearchResult<Note>(results); // Array of higlighted fragments for Caption field for the first hit.
var hit = noteResults.hits.hits[0];
string[] fragments = hit.highlight["Caption"];

See Highlighting Gist for complete sample.

Scrolling

ES documentation: http://www.elasticsearch.org/guide/reference/api/search/scroll/

You can construct scrolling search request by specifing scroll keep alive time in SearchCommand:

string scrollingSearchCommand = new SearchCommand(index:"notes", type:"note")
.Scroll("5m")
.SearchType(SearchType.scan);

To scroll found documents you need to deserialize results to SearchResult<T> and get the _scroll_id field. Then you should execute SearchScrollCommand with acquired scroll_id

// Execute query and deserialize results.
string results = connection.Post(scrollingSearchCommand, queryJson);
var noteResults = serializer.ToSearchResult<Note>(results); // Get the initial scroll ID
string scrollId = scrollResults._scroll_id; // Execute SearchScroll request to scroll found documents.
results = connection.Get(Commands.SearchScroll(scrollId).Scroll("5m"));

See Scrolling Gist for complete sample.

Mapping

ES documentation: http://www.elasticsearch.org/guide/reference/mapping/

Mapping of core and object types could be performed in the following manner:

private static string BuildCompanyMapping()
{
return new MapBuilder<Company>()
.RootObject(typeName: "company",
map: r => r
.All(a => a.Enabled(false))
.Dynamic(false)
.Properties(pr => pr
.String(company => company.Name, f => f.Analyzer(DefaultAnalyzers.standard).Boost(2))
.String(company => company.Description, f => f.Analyzer(DefaultAnalyzers.standard))
.String(company => company.Fax, f => f.Analyzer(DefaultAnalyzers.keyword)) .Object(company => company.Address, address => address
.Properties(ap => ap
.String(addr => addr.City)
.String(addr => addr.State)
.String(addr => addr.Country)
)
) .NestedObject(company => company.Contacts, o => o
.Properties(p => p
.String(contact => contact.Name)
.String(contact => contact.Department)
.String(contact => contact.Email) // It's unnecessary to specify opt.Type(NumberMappingType.Integer)
// cause it will be inferred from property type.
// Showed here only for educational purpose.
.Number(contact => contact.Age, opt => opt.Type(NumberMappingType.Integer)) .Object(ct => ct.Address, oa => oa
.Properties( pp => pp
.String(a => a.City)
.String(a => a.State)
.String(a => a.Country)
)
)
)
)
)
)
.BuildBeautified();

To apply mapping you need to use PutMappingCommand:

var connection = new ElasticConnection("localhost", 9200);
string jsonMapping = BuildCompanyMapping(); connection.Put(new PutMappingCommand("store", "company"), jsonMapping);

See Mapping Builder Gist for complete sample.

Index Settings

ES documentation: http://www.elasticsearch.org/guide/reference/api/admin-indices-update-settings.html

You can build index settings by using IndexSettinsBuilder:

private static string BuildIndexSettings()
{
return new IndexSettingsBuilder()
.Analysis(als => als
.Analyzer(a => a
.Custom("lowerkey", custom => custom
.Tokenizer(DefaultTokenizers.keyword)
.Filter(DefaultTokenFilters.lowercase)
)
.Custom("fulltext", custom => custom
.CharFilter(DefaultCharFilters.html_strip)
.Tokenizer(DefaultTokenizers.standard)
.Filter(DefaultTokenFilters.word_delimiter,
DefaultTokenFilters.lowercase,
DefaultTokenFilters.stop,
DefaultTokenFilters.standard)
)
)
)
.BuildBeautified();
}

You can put index settings to index by UpdateSettingsCommand or by passing settings to index creation command:

var connection = new ElasticConnection("localhost", 9200);

var settings = BuildIndexSettings();

if (IsIndexExists("store", connection))
{
// We can't update settings on active index.
// So we need to close it, then update settings and then open index back.
connection.Post(new CloseCommand("store")); connection.Put(new UpdateSettingsCommand("store"), settings); connection.Post(new OpenCommand("store"));
}
else
{
// Create Index with settings.
connection.Put(Commands.Index("store").Refresh(), settings);
}

See Index Settings Gist for complete sample.

Special thanks to devoyster (Andriy Kozachuk) for providing Index Settings support.

Samples

If something is missed

In case you need ElasticSearch feature that not yet covered by PlainElastic.Net, just remember that everything passed to ES connection is a string, so you can add missed functionality using .Custom(string) function, that exists in every builder.

return new QueryBuilder<Item>()
.Query(q => q
.Term(t => t
.Field(user => user.Active)
.Value(true.ToString()) // Custom string representing boost part.
.Custom("\"boost\": 3")
)
)
.BuildBeautified();

or even more - just pass you string with JSON to ES connection.

Also don't forget to add an issue to PlainElastic.Net github repository PlainElastic Issues so I can add this functionality to the future builds.

License

PlainElastic.Net is free software distributed under the terms of MIT License (see LICENSE.txt) these terms don’t apply to other 3rd party tools, utilities or code which may be used to develop this application.

PlainElastic.Net的更多相关文章

  1. .NetCore下ES查询驱动 PlainElastic .Net 升级官方驱动 Elasticsearch .Net

    1.背景 由于历史原因,笔者所在的公司原有的ES查询驱动采用的是 PlainElastic.Net, 经过询问原来是之前PlainElastic.Net在园子里文档较多,上手比较容易,所以最初作者选用 ...

  2. Elasticsearch第五篇:PlainElastic.Net 操作 Elasticsearch

    再次强调,我安装的Elasticsearch 版本是 7.8.0 ,C# 操作 Elasticsearch 的驱动有 NEST.Elasticsearch.net .PlainElastic.Net ...

  3. DotNet 资源大全中文版(Awesome最新版)

    Awesome系列的.Net资源整理.awesome-dotnet是由quozd发起和维护.内容包括:编译器.压缩.应用框架.应用模板.加密.数据库.反编译.IDE.日志.风格指南等. 算法与数据结构 ...

  4. DotNet 资源大全

    awesome-dotnet 是由 quozd 发起和维护.内容包括:编译器.压缩.应用框架.应用模板.加密.数据库.反编译.IDE.日志.风格指南等. https://github.com/jobb ...

  5. 《.NET开发资源大全》

    目录 API 应用框架(Application Frameworks) 应用模板(Application Templates) 人工智能(Artificial Intelligence) 程序集处理( ...

  6. 转帖:DotNet 资源大全中文版

    (注:下面用 [$] 标注的表示收费工具,但部分收费工具针对开源软件的开发/部署/托管是免费的) API 框架 NancyFx:轻量.用于构建 HTTP 基础服务的非正式(low-ceremony)框 ...

  7. .Net 开源项目资源大全

    伯乐在线已在 GitHub 上发起「DotNet 资源大全中文版」的整理.欢迎扩散.欢迎加入. https://github.com/jobbole/awesome-dotnet-cn (注:下面用 ...

  8. ElasticSearch(站内搜索)

    简介 Elasticsearch是一个实时的分布式搜索和分析引擎.它可以帮助你用前所未有的速度去处理大规模数据.它可以用于全文搜索,结构化搜索以及分析,当然你也可以将这三者进行组合.Elasticse ...

  9. ElasticSearch返回不同的type的序列化

    总体思路是: 利用json序列化的别名方法,反序列化到不同的字段上: 因为别名方法不支持多个别名,所以不得不根据不同的type,定义了多套适配内容. 最终在属性上进行选择. 本示例ElasticSea ...

随机推荐

  1. c/c++ 字节对齐

    c 字节对齐 概念: 结构体里会包括各种类型的成员,比如int char long等等,它们要占用的空间不同,系统为一个结构体开辟内存空间时,会有2种选择. 第一种:节省空间的方案,以上面的列子来说的 ...

  2. 编写脚本实现DHCP服务与DHCP中继自动化执行

    编写脚本实现DHCP服务与DHCP中继自动化执行 本脚本是在liunx搭建DHCP服务器以及DHCP中继服务器实验环境下实现的https://www.cnblogs.com/yuzly/p/10539 ...

  3. php curl参数详解之post方法

    利用记录的URL参数解释,写一个post方法: <?php function do_post($url, $data) { $ch = curl_init(); //设置CURLOPT_RETU ...

  4. Ubuntu 12.04上安装 MongoDB并运行

    Ubuntu 12.04上安装 MongoDB并运行 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 在Terminal输入 sudo apt-key ...

  5. Shell and DOS

    long long ago 自己便想总结下shell命令以及dos常用的命令,毕竟实际实践中会经常用到,用的好的批处理或者shell脚本会事半功倍,好了,废话不多说,开始. shell echo [字 ...

  6. 洛谷P1904

    法一,数字太大,可能通过不了   #include <iostream>#include <algorithm>#include <cstdio>using nam ...

  7. zabbix全网监控

    为什么要监控 运维的职责1.保障企业数据的安全可靠.2.为客户提供7*24小时服务.3.不断提升用户的体验. 在关键时刻,提前提醒我们服务器要出问题了 当出问题之后,可以便于找到问题的根源 拿到公司服 ...

  8. 思考与算法:大脑是cpu、思考是算法

    思考与算法:大脑是cpu.思考是算法

  9. 微信硬件平台(七)微信开发--如何存储并定时更新access_token

    https://blog.csdn.net/sct_t/article/details/53002611 我们知道请求access_Token会返回这样一个json,包括access_token(凭证 ...

  10. pip 安装指定版本软件包

    默认情况下,pip 将安装最新版本的软件包,但有时需要获取特定版本的安装包,比如 jinja2 从 2.9 开始加入了 async 关键字,这个会导致 py2exe 报错:Invalid Syntax ...