/*
构造转移矩阵:
先推公式:
首先是第0行:A[0][j+1]=A[0][j]*10+3
1-n行: A[i][j+1]=A[i][j]+A[i-1][j+1]=...
=A[i][j]+A[i-1][j]+...+A[1][j]+A[0][j+1]
所以第j+1行状态可以由第j行通过乘上一个转移矩阵得到
那么就是转移矩阵的构造
设F[j]为第j列,F[j+1]为第j+1列,B为转移矩阵
有 F[j+1]=B*F[j]
按照递推性质
1 0 0 0 0 ... 0 3 3
1 10 0 0 0 ... 0 A[0][j] A[0][j+1]
1 10 1 0 0 ... 0 * A[1][j] = A[1][j+1]
1 10 1 1 0 ... 0 A[2][j] .
1 10 1 1 1 ... 0 A[3][j] .
1 10 1 1 1 ... 1 A[n][j] A[n][j+1]
规定初始数组F[0]=[3,233,a1,a2...an]
*/
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mod 10000007
ll F[],a[];
ll n,m;
struct Mat{
ll m[][];
Mat(){memset(m,,sizeof m);}
};
void mul1(Mat A,ll F[]){
ll B[]={};
for(int i=;i<n+;i++)
for(int j=;j<n+;j++)
B[i]=(B[i]+A.m[i][j]*F[j]%mod)%mod;
memcpy(F,B,sizeof B);
}
void mul2(Mat & A,Mat B){
Mat C;
for(int i=;i<n+;i++)
for(int j=;j<n+;j++)
for(int k=;k<n+;k++)
C.m[i][j]=(C.m[i][j]+A.m[i][k]*B.m[k][j]%mod)%mod;
memcpy(A.m,C.m,sizeof C.m);
}
int main(){
while(cin>>n>>m){
F[]=,F[]=;
for(int i=;i<n+;i++)cin>>F[i];
Mat A,B;
for(int i=;i<n+;i++)A.m[i][]=;
for(int i=;i<n+;i++)A.m[i][]=;
for(int j=;j<n+;j++)
for(int i=j;i<n+;i++)
A.m[i][j]=; while(m){
if(m%)
mul1(A,F);
mul2(A,A);
m>>=;
}
cout<<F[n+]<<endl;
}
}

hdu5015构造转移矩阵的更多相关文章

  1. 从随机过程到马尔科夫链蒙特卡洛方法(MCMC)

    从随机过程到马尔科夫链蒙特卡洛方法 1. Introduction 第一次接触到 Markov Chain Monte Carlo (MCMC) 是在 theano 的 deep learning t ...

  2. 北京培训记day1

    数学什么的....简直是丧心病狂啊好不好 引入:Q1:前n个数中最多能取几个,使得没有一个数是另一个的倍数   答案:(n/2)上取整 p.s.取后n/2个就好了 Q2:在Q1条件下,和最小为多少 答 ...

  3. MCMC 、抽样算法与软件实现

    一.MCMC 简介 1. Monte Carlo 蒙特卡洛 蒙特卡洛方法(Monte Carlo)是一种通过特定分布下的随机数(或伪随机数)进行模拟的方法.典型的例子有蒲丰投针.定积分计算等等,其基础 ...

  4. 2014 ACM/ICPC Asia Regional Xi'an Online

    03 hdu5009 状态转移方程很好想,dp[i] = min(dp[j]+o[j~i]^2,dp[i]) ,o[j~i]表示从j到i颜色的种数. 普通的O(n*n)是会超时的,可以想到o[]最大为 ...

  5. BZOJ4471 : 随机数生成器Ⅱ

    \[\begin{eqnarray*}x_i&=&x_{i-1}+x_{i-2}\\x_i^2&=&x_{i-2}^2+x_{i-1}^2+2x_{i-2}x_{i-1 ...

  6. [转] - MC、MC、MCMC简述

    贝叶斯集锦(3):从MC.MC到MCMC 2013-07-31 23:03:39 #####一份草稿 贝叶斯计算基础 一.从MC.MC到MCMC 斯坦福统计学教授Persi Diaconis是一位传奇 ...

  7. 随机采样方法整理与讲解(MCMC、Gibbs Sampling等)

    本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到P ...

  8. AC自动机基础知识讲解

    AC自动机 转载自:小白 还可参考:飘过的小牛 1.KMP算法: a. 传统字符串的匹配和KMP: 对于字符串S = ”abcabcabdabba”,T = ”abcabd”,如果用T去匹配S下划线部 ...

  9. LDA-math-MCMC 和 Gibbs Sampling

    http://cos.name/2013/01/lda-math-mcmc-and-gibbs-sampling/ 3.1 随机模拟 随机模拟(或者统计模拟)方法有一个很酷的别名是蒙特卡罗方法(Mon ...

随机推荐

  1. ==,hashcde, equals(一)

    1.Hash  的属性, 1)bucket 和 list 2.java.lang.object 的 hashcode 和 equal 通过内存地址比较 3.为什么要重写hashcode 和 equal ...

  2. 2、jQuery的基本概念-必看-版本-入口函数- jq对象和dom对象区别

    1.4. jQuery的版本 官网下载地址:http://jquery.com/download/ jQuery版本有很多,分为1.x 2.x 3.x 大版本分类: 1.x版本:能够兼容IE678浏览 ...

  3. 获取汉字拼音&首字母

    pinyin4j https://www.cnblogs.com/yjq520/p/7681537.html

  4. 【NLP CS224N笔记】Lecture 2 - Word Vector Representations: word2vec

    I. Word meaning Meaning的定义有很多种,其中有: the idea that is represented by a word,phrase,etc. the idea that ...

  5. pythonのsqlalchemy简单查询

    #!/usr/bin/env python import sqlalchemy from sqlalchemy import create_engine from sqlalchemy.ext.dec ...

  6. java在进程启动和关闭.exe程序

    /** * @desc 启动进程 * @author zp * @date 2018-3-29 */ public static void startProc(String processName) ...

  7. iframe教程

    有关iframe的最强大的强大的教程 $(window.parent.document).contents().find("#tab_release"+taskId2+" ...

  8. Kafka管理工具介绍【转】

    Kafka内部提供了许多管理脚本,这些脚本都放在$KAFKA_HOME/bin目录下,而这些类的实现都是放在源码的kafka/core/src/main/scala/kafka/tools/路径下. ...

  9. css利用padding百分比实现图片自适应高度

    应用场景 宽高比率,实现图片自适应高度,防止图片加载过程高度为0,加载完图片高度撑起,它下面的div抖动问题 重点:CSS百分比padding都是相对宽度计算的 <div class=" ...

  10. 左侧滚动条js

    <script> var left = document.getElementById('main-left'); var right = document.getElementById( ...