数列分块是莫队分块的前置技能,练习一下

1.loj6277

给出一个长为n的数列,以及n个操作,操作涉及区间加法,单点查值。

直接分块+tag即可

#include <bits/stdc++.h>
#define ll long long
#define IO ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
#define pp pair<int,int>
#define rep(ii,a,b) for(int ii=a;ii<=b;ii++)
#define per(ii,a,b) for(int ii=a;ii>=b;ii--)
using namespace std;
const int maxn=1e5+10;
const int maxm=1e6+10;
const int INF=0x3f3f3f3f;
int casn,n,m,k;
int size;
ll num[maxn],tag[maxn];
int id[maxn];
void update(int s,int t,ll x){
for(int i=s;i<=min(id[s]*size,t);i++)
num[i]+=x;
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++)
num[i]+=x;
}
for(int i=id[s]+1;i<=id[t]-1;i++){
tag[i]+=x;
}
} int main(){
//#define test
#ifdef test
freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
#endif
scanf("%d",&n);
size=sqrt(n);
for(int i=1;i<=n;i++) scanf("%lld",num+i);
for(int i=1;i<=n;i++) id[i]=(i-1)/size+1;
for(int i=1;i<=n;i++){
int flag,a,b;
ll c;
scanf("%d%d%d%lld",&flag,&a,&b,&c);
if(flag==0) update(a,b,c);
else printf("%lld\n",num[b]+tag[id[b]]);
}
#ifdef test
fclose(stdin);fclose(stdout);system("out.txt");
#endif
return 0;
}

  

2.loj6278

给出一个长为n的数列,以及n个操作,操作涉及区间加法,询问区间内小于某个值x的元素个数。

分块,,用vector可以很方便得保存排序结果,每次修改两端应该重新排序

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e5+10;
const int maxm=1e6+10;
const int INF=0x3f3f3f3f;
int casn,n,m,k;
int size;
ll num[maxn],tag[maxn];
vector<ll>rk[maxn/100];
int id[maxn];
void reset(int pos){
rk[pos].clear();
for(int i=(pos-1)*size+1;i<=min(pos*size,n);i++)
rk[pos].push_back(num[i]);
sort(rk[pos].begin(),rk[pos].end());
}
void update(int s,int t,ll x){
for(int i=s;i<=min(id[s]*size,t);i++)
num[i]+=x;
reset(id[s]);
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++)
num[i]+=x;
reset(id[t]);
}
for(int i=id[s]+1;i<=id[t]-1;i++){
tag[i]+=x;
}
}
int query(int s,int t,ll k){
int ans=0;
for(int i=s;i<=min(id[s]*size,t);i++){
if(num[i]+tag[id[s]]<k)ans++;
}
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++){
if(num[i]+tag[id[t]]<k)ans++;
}
}
for(int i=id[s]+1;i<=id[t]-1;i++){
ans+=lower_bound(rk[i].begin(),rk[i].end(),(ll)k-tag[i])-rk[i].begin();
}
return ans;
}
int main(){
//#define test
#ifdef test
freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
#endif
scanf("%d",&n);
size=sqrt(n);
for(int i=1;i<=n;i++) scanf("%lld",num+i);
for(int i=1;i<=n;i++) {
id[i]=(i-1)/size+1;
rk[id[i]].push_back(num[i]);
}
for(int i=1;i<=n;i++)
sort(rk[i].begin(),rk[i].end());
for(int i=1;i<=n;i++){
int flag,a,b;
ll c;
scanf("%d%d%d%lld",&flag,&a,&b,&c);
if(flag==0) update(a,b,c);
else printf("%d\n",query(a,b,c*c));
}
#ifdef test
fclose(stdin);fclose(stdout);system("out.txt");
#endif
return 0;
}

3.loj6279

给出一个长为n的数列,以及n个操作,操作涉及区间加法,询问区间内小于某个值x的前驱(比其小的最大元素)

用多重集合维护块内元素,注意两端的部分需要重建

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e5+10;
const int maxm=1e6+10;
const int INF=0x3f3f3f3f;
int casn,n,m,k;
int size;
ll num[maxn],tag[maxn];
multiset<ll>vis[maxn/100];
int id[maxn];
void update(int s,int t,ll x){
for(int i=s;i<=min(id[s]*size,t);i++){
vis[id[s]].erase(num[i]);
num[i]+=x;
vis[id[s]].insert(num[i]);
}
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++){
vis[id[t]].erase(num[i]);
num[i]+=x;
vis[id[t]].insert(num[i]);
}
}
for(int i=id[s]+1;i<=id[t]-1;i++){
tag[i]+=x;
}
}
ll query(int s,int t,ll k){
ll ans=-1;
for(int i=s;i<=min(id[s]*size,t);i++){
ll tmp=num[i]+tag[id[s]];
if(tmp<k) ans=max(ans,tmp);
}
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++){
ll tmp=num[i]+tag[id[t]];
if(tmp<k) ans=max(ans,tmp);
}
}
for(int i=id[s]+1;i<=id[t]-1;i++){
int tmp=k-tag[i];
multiset<ll>::iterator it=vis[i].lower_bound(tmp);
if(it==vis[i].begin()) continue;
--it;
ans=max(ans,*it+tag[i]);
}
return ans;
}
int main(){
//#define test
#ifdef test
freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
#endif
scanf("%d",&n);
size=sqrt(n);
for(int i=1;i<=n;i++) scanf("%lld",num+i);
for(int i=1;i<=n;i++) {
id[i]=(i-1)/size+1;
vis[id[i]].insert(num[i]);
}
for(int i=1;i<=n;i++){
int flag,a,b;
ll c;
scanf("%d%d%d%lld",&flag,&a,&b,&c);
if(flag==0) update(a,b,c);
else printf("%d\n",query(a,b,c));
}
#ifdef test
fclose(stdin);fclose(stdout);system("out.txt");
#endif
return 0;
}

4.loj6280

给出一个长为n的数列,以及n个操作,操作涉及区间加法,区间求和。

直接分块,同时需要维护一个块元素和

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e5+10;
const int maxm=1e6+10;
const int INF=0x3f3f3f3f;
int casn,n,m,k;
int size;
ll num[maxn],tag[maxn],sum[maxn];
int id[maxn];
void update(int s,int t,ll x){
for(int i=s;i<=min(id[s]*size,t);i++){
num[i]+=x;
}
sum[id[s]]+=x*(min(id[s]*size,t)-s+1);
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++){
num[i]+=x;
}
sum[id[t]]+=(t-(id[t]-1)*size)*x;
}
for(int i=id[s]+1;i<=id[t]-1;i++){
tag[i]+=x;
}
}
ll query(int s,int t){
ll ans=0;
for(int i=s;i<=min(id[s]*size,t);i++){
ans+=num[i]+tag[id[s]];
}
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++){
ans+=num[i]+tag[id[t]];
}
}
for(int i=id[s]+1;i<=id[t]-1;i++){
ans+=sum[i]+tag[i]*size;
}
return ans;
}
int main(){
//#define test
#ifdef test
freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
#endif
scanf("%d",&n);
size=sqrt(n);
for(int i=1;i<=n;i++) scanf("%lld",num+i);
for(int i=1;i<=n;i++) {
id[i]=(i-1)/size+1;
sum[id[i]]+=num[i];
}
for(int i=1;i<=n;i++){
int flag,a,b;
ll c;
scanf("%d%d%d%lld",&flag,&a,&b,&c);
if(flag==0) update(a,b,c);
else printf("%lld\n",query(a,b)%(c+1));
}
#ifdef test
fclose(stdin);fclose(stdout);system("out.txt");
#endif
return 0;
}

(其实LOJ的题目数据比较水,欢迎hack我)

LOJ 6277-6280 数列分块入门 1-4的更多相关文章

  1. LOJ 6277:数列分块入门 1(分块入门)

    #6277. 数列分块入门 1 内存限制:256 MiB时间限制:100 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计讨论 3 测试数据 题目描述 给出一 ...

  2. LOJ #6280. 数列分块入门 4-分块(区间加法、区间求和)

    #6280. 数列分块入门 4 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论   题目描述 给出一个 ...

  3. loj 6278 6279 数列分块入门 2 3

    参考:「分块」数列分块入门1 – 9 by hzwer 2 Description 给出一个长为\(n\)的数列,以及\(n\)个操作,操作涉及区间加法,询问区间内小于某个值\(x\)的元素个数. 思 ...

  4. LOJ#6280. 数列分块入门 4

    另外开一个数组维护每一个块内的总和. 给区间加值是,残余的块一个一个点更新,整个的块一次性更新 查询的时候也是,残余的块一个一个点加,整个的块一次性加 #include<map> #inc ...

  5. LibreOJ 6280 . 数列分块入门 4

    题目链接:https://loj.ac/problem/6280 加一个数组保存块的和. 代码: #include<iostream> #include<cstring> #i ...

  6. 【LibreOJ 6277】数列分块入门 1 (分块)

    emmm-学下分块~ 区间:数列中连续一段的元素 区间操作:将某个区间[a,b]的所有元素进行某种改动的操作 块:我们将数列划分成若干个不相交的区间,每个区间称为一个块 整块:在一个区间操作时,完整包 ...

  7. LibreOJ 6280 数列分块入门 4(分块区间加区间求和)

    题解:分块的区间求和比起线段树来说实在是太好写了(当然,复杂度也高)但这也是没办法的事情嘛.总之50000的数据跑了75ms左右还是挺优越的. 比起单点询问来说,区间询问和也没有复杂多少,多开一个su ...

  8. 【LOJ#6277】数列分块1

    题目大意:维护一个长度为 N 的序列,支持区间修改.单点查询. 代码如下 #include <bits/stdc++.h> using namespace std; const int m ...

  9. LOJ——#6277. 数列分块入门 1

    ~~推荐播客~~ 「分块」数列分块入门1 – 9 by hzwer 浅谈基础根号算法——分块 博主蒟蒻,有缘人可直接观摩以上大佬的博客... #6277. 数列分块入门 1 题目大意: 给出一个长为 ...

  10. 数列分块入门1-9 By hzwer

    声明 持续更新,因为博主也是正在学习分块的知识,我很菜的,菜的抠$jio$ 写在前面 分块是个很暴力的算法,但却比暴力优秀的多,分块算法的时间复杂度一般是根号的,他的主要思想是将一个长度是$n$的数列 ...

随机推荐

  1. mysql一张表多个字段关联另一张表查询

    如下:一张订单表多个字段关联用户表: 1.链表查询 SELECT cu.id AS 'id',cu.version AS 'version',cu.cid AS 'cid',cu.uid AS 'ui ...

  2. html body 100%

    html body 100% html <div class="header"> </div> <div class="main" ...

  3. functools学习记录

    装饰器demo def wrapper(func): print('装饰器工作了') def inner(*args,**kwargs): return func(*args,**kwargs) re ...

  4. Silverlight中字典的使用

    通过值搜索字典中的项: FristOfDefault返回序列中满足条件的第一个元素:如果未找到这样的元素,则返回默认值.

  5. Vertica系列: 表的分段和分区

    Vertica 有两个数据分布的概念, segmentation 和 partition, 至少有下面几个区别: 1.目的方面:segmentation 解决各节点数据倾斜问题, 适用于木桶原理, 数 ...

  6. Ubuntu swap

    问:我是一个Ubuntu 14.04 LTS版本的新手.我需要一块额外的swap文件来提高我Ubuntu服务器的性能.我怎样才能通过SSH连接用相关命令为我的Ubuntu 14.04 LTS 增加一块 ...

  7. thinkcmf 相关

    后台登录,暂停关掉登录验证码: /Volumes/macHD2/myCode/wwwroot/app/admin/controller/PublicController.php $captcha = ...

  8. bzoj 2726 任务安排(3)/loj 10184-10186 斜率优化

    任务安排1 #include<bits/stdc++.h> #define int long long using namespace std; ; int n,s,t[N],c[N],f ...

  9. Kali Linux之使用SET快捷生成钓鱼网站方法

    SET (Social Engineering Tools) 1.使用命令:setoolkit 会显示工具菜单 2.输入1 ,选择菜单中的Social-Engineering Attacks (社会工 ...

  10. JavaScript中Float类型保留两位小数

    JavaScript中Float类型保留两位小数 核心方法: num:要操作的数字     size:要保留的位数 parseFloat(num).toFixed(size); 实现代码如下:var  ...