LOJ 6277-6280 数列分块入门 1-4
数列分块是莫队分块的前置技能,练习一下
1.loj6277
给出一个长为n的数列,以及n个操作,操作涉及区间加法,单点查值。
直接分块+tag即可
#include <bits/stdc++.h>
#define ll long long
#define IO ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
#define pp pair<int,int>
#define rep(ii,a,b) for(int ii=a;ii<=b;ii++)
#define per(ii,a,b) for(int ii=a;ii>=b;ii--)
using namespace std;
const int maxn=1e5+10;
const int maxm=1e6+10;
const int INF=0x3f3f3f3f;
int casn,n,m,k;
int size;
ll num[maxn],tag[maxn];
int id[maxn];
void update(int s,int t,ll x){
for(int i=s;i<=min(id[s]*size,t);i++)
num[i]+=x;
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++)
num[i]+=x;
}
for(int i=id[s]+1;i<=id[t]-1;i++){
tag[i]+=x;
}
} int main(){
//#define test
#ifdef test
freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
#endif
scanf("%d",&n);
size=sqrt(n);
for(int i=1;i<=n;i++) scanf("%lld",num+i);
for(int i=1;i<=n;i++) id[i]=(i-1)/size+1;
for(int i=1;i<=n;i++){
int flag,a,b;
ll c;
scanf("%d%d%d%lld",&flag,&a,&b,&c);
if(flag==0) update(a,b,c);
else printf("%lld\n",num[b]+tag[id[b]]);
}
#ifdef test
fclose(stdin);fclose(stdout);system("out.txt");
#endif
return 0;
}
2.loj6278
给出一个长为n的数列,以及n个操作,操作涉及区间加法,询问区间内小于某个值x的元素个数。
分块,,用vector可以很方便得保存排序结果,每次修改两端应该重新排序
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e5+10;
const int maxm=1e6+10;
const int INF=0x3f3f3f3f;
int casn,n,m,k;
int size;
ll num[maxn],tag[maxn];
vector<ll>rk[maxn/100];
int id[maxn];
void reset(int pos){
rk[pos].clear();
for(int i=(pos-1)*size+1;i<=min(pos*size,n);i++)
rk[pos].push_back(num[i]);
sort(rk[pos].begin(),rk[pos].end());
}
void update(int s,int t,ll x){
for(int i=s;i<=min(id[s]*size,t);i++)
num[i]+=x;
reset(id[s]);
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++)
num[i]+=x;
reset(id[t]);
}
for(int i=id[s]+1;i<=id[t]-1;i++){
tag[i]+=x;
}
}
int query(int s,int t,ll k){
int ans=0;
for(int i=s;i<=min(id[s]*size,t);i++){
if(num[i]+tag[id[s]]<k)ans++;
}
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++){
if(num[i]+tag[id[t]]<k)ans++;
}
}
for(int i=id[s]+1;i<=id[t]-1;i++){
ans+=lower_bound(rk[i].begin(),rk[i].end(),(ll)k-tag[i])-rk[i].begin();
}
return ans;
}
int main(){
//#define test
#ifdef test
freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
#endif
scanf("%d",&n);
size=sqrt(n);
for(int i=1;i<=n;i++) scanf("%lld",num+i);
for(int i=1;i<=n;i++) {
id[i]=(i-1)/size+1;
rk[id[i]].push_back(num[i]);
}
for(int i=1;i<=n;i++)
sort(rk[i].begin(),rk[i].end());
for(int i=1;i<=n;i++){
int flag,a,b;
ll c;
scanf("%d%d%d%lld",&flag,&a,&b,&c);
if(flag==0) update(a,b,c);
else printf("%d\n",query(a,b,c*c));
}
#ifdef test
fclose(stdin);fclose(stdout);system("out.txt");
#endif
return 0;
}
3.loj6279
给出一个长为n的数列,以及n个操作,操作涉及区间加法,询问区间内小于某个值x的前驱(比其小的最大元素)
用多重集合维护块内元素,注意两端的部分需要重建
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e5+10;
const int maxm=1e6+10;
const int INF=0x3f3f3f3f;
int casn,n,m,k;
int size;
ll num[maxn],tag[maxn];
multiset<ll>vis[maxn/100];
int id[maxn];
void update(int s,int t,ll x){
for(int i=s;i<=min(id[s]*size,t);i++){
vis[id[s]].erase(num[i]);
num[i]+=x;
vis[id[s]].insert(num[i]);
}
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++){
vis[id[t]].erase(num[i]);
num[i]+=x;
vis[id[t]].insert(num[i]);
}
}
for(int i=id[s]+1;i<=id[t]-1;i++){
tag[i]+=x;
}
}
ll query(int s,int t,ll k){
ll ans=-1;
for(int i=s;i<=min(id[s]*size,t);i++){
ll tmp=num[i]+tag[id[s]];
if(tmp<k) ans=max(ans,tmp);
}
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++){
ll tmp=num[i]+tag[id[t]];
if(tmp<k) ans=max(ans,tmp);
}
}
for(int i=id[s]+1;i<=id[t]-1;i++){
int tmp=k-tag[i];
multiset<ll>::iterator it=vis[i].lower_bound(tmp);
if(it==vis[i].begin()) continue;
--it;
ans=max(ans,*it+tag[i]);
}
return ans;
}
int main(){
//#define test
#ifdef test
freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
#endif
scanf("%d",&n);
size=sqrt(n);
for(int i=1;i<=n;i++) scanf("%lld",num+i);
for(int i=1;i<=n;i++) {
id[i]=(i-1)/size+1;
vis[id[i]].insert(num[i]);
}
for(int i=1;i<=n;i++){
int flag,a,b;
ll c;
scanf("%d%d%d%lld",&flag,&a,&b,&c);
if(flag==0) update(a,b,c);
else printf("%d\n",query(a,b,c));
}
#ifdef test
fclose(stdin);fclose(stdout);system("out.txt");
#endif
return 0;
}
4.loj6280
给出一个长为n的数列,以及n个操作,操作涉及区间加法,区间求和。
直接分块,同时需要维护一个块元素和
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e5+10;
const int maxm=1e6+10;
const int INF=0x3f3f3f3f;
int casn,n,m,k;
int size;
ll num[maxn],tag[maxn],sum[maxn];
int id[maxn];
void update(int s,int t,ll x){
for(int i=s;i<=min(id[s]*size,t);i++){
num[i]+=x;
}
sum[id[s]]+=x*(min(id[s]*size,t)-s+1);
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++){
num[i]+=x;
}
sum[id[t]]+=(t-(id[t]-1)*size)*x;
}
for(int i=id[s]+1;i<=id[t]-1;i++){
tag[i]+=x;
}
}
ll query(int s,int t){
ll ans=0;
for(int i=s;i<=min(id[s]*size,t);i++){
ans+=num[i]+tag[id[s]];
}
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++){
ans+=num[i]+tag[id[t]];
}
}
for(int i=id[s]+1;i<=id[t]-1;i++){
ans+=sum[i]+tag[i]*size;
}
return ans;
}
int main(){
//#define test
#ifdef test
freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
#endif
scanf("%d",&n);
size=sqrt(n);
for(int i=1;i<=n;i++) scanf("%lld",num+i);
for(int i=1;i<=n;i++) {
id[i]=(i-1)/size+1;
sum[id[i]]+=num[i];
}
for(int i=1;i<=n;i++){
int flag,a,b;
ll c;
scanf("%d%d%d%lld",&flag,&a,&b,&c);
if(flag==0) update(a,b,c);
else printf("%lld\n",query(a,b)%(c+1));
}
#ifdef test
fclose(stdin);fclose(stdout);system("out.txt");
#endif
return 0;
}
(其实LOJ的题目数据比较水,欢迎hack我)
LOJ 6277-6280 数列分块入门 1-4的更多相关文章
- LOJ 6277:数列分块入门 1(分块入门)
#6277. 数列分块入门 1 内存限制:256 MiB时间限制:100 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计讨论 3 测试数据 题目描述 给出一 ...
- LOJ #6280. 数列分块入门 4-分块(区间加法、区间求和)
#6280. 数列分块入门 4 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 题目描述 给出一个 ...
- loj 6278 6279 数列分块入门 2 3
参考:「分块」数列分块入门1 – 9 by hzwer 2 Description 给出一个长为\(n\)的数列,以及\(n\)个操作,操作涉及区间加法,询问区间内小于某个值\(x\)的元素个数. 思 ...
- LOJ#6280. 数列分块入门 4
另外开一个数组维护每一个块内的总和. 给区间加值是,残余的块一个一个点更新,整个的块一次性更新 查询的时候也是,残余的块一个一个点加,整个的块一次性加 #include<map> #inc ...
- LibreOJ 6280 . 数列分块入门 4
题目链接:https://loj.ac/problem/6280 加一个数组保存块的和. 代码: #include<iostream> #include<cstring> #i ...
- 【LibreOJ 6277】数列分块入门 1 (分块)
emmm-学下分块~ 区间:数列中连续一段的元素 区间操作:将某个区间[a,b]的所有元素进行某种改动的操作 块:我们将数列划分成若干个不相交的区间,每个区间称为一个块 整块:在一个区间操作时,完整包 ...
- LibreOJ 6280 数列分块入门 4(分块区间加区间求和)
题解:分块的区间求和比起线段树来说实在是太好写了(当然,复杂度也高)但这也是没办法的事情嘛.总之50000的数据跑了75ms左右还是挺优越的. 比起单点询问来说,区间询问和也没有复杂多少,多开一个su ...
- 【LOJ#6277】数列分块1
题目大意:维护一个长度为 N 的序列,支持区间修改.单点查询. 代码如下 #include <bits/stdc++.h> using namespace std; const int m ...
- LOJ——#6277. 数列分块入门 1
~~推荐播客~~ 「分块」数列分块入门1 – 9 by hzwer 浅谈基础根号算法——分块 博主蒟蒻,有缘人可直接观摩以上大佬的博客... #6277. 数列分块入门 1 题目大意: 给出一个长为 ...
- 数列分块入门1-9 By hzwer
声明 持续更新,因为博主也是正在学习分块的知识,我很菜的,菜的抠$jio$ 写在前面 分块是个很暴力的算法,但却比暴力优秀的多,分块算法的时间复杂度一般是根号的,他的主要思想是将一个长度是$n$的数列 ...
随机推荐
- Kafka权威指南 读书笔记之(三)Kafka 生产者一一向 Kafka 写入数据
不管是把 Kafka 作为消息队列.消息总线还是数据存储平台来使用 ,总是需要有一个可以往 Kafka 写入数据的生产者和一个从 Kafka 读取数据的消费者,或者一个兼具两种角色的应用程序. 开发者 ...
- jQuery获取相同元素下标
如题:经常搞混淆,index()获取的是下标,而eq(下标值)获取的是元素对象 var list=$(".toos");//获取class为toos的元素集合$('.toos'). ...
- windows环境安装weblogic服务【转】【补】
我的环境: windows: win10 professional edition jdk: C:\Program Files\Java\jdk1.6.0_45 weblogic安装目录 (WEBLO ...
- bzoj千题计划318:bzoj1396: 识别子串(后缀自动机 + 线段树)
https://www.lydsy.com/JudgeOnline/problem.php?id=1396 后缀自动机的parent树上,如果不是叶子节点,那么至少有两个子节点 而一个状态所代表子串的 ...
- Shell编程(五)脚本语法
${}: 数据“内容”删除,替换:{}: 列表 1. 条件测试: test =~:正则匹配 2. if/then/elif/else/fi #!/bin/bash echo "Is it o ...
- Socket远程调试日志之 SocketLog的简单实用
github地址:https://github.com/luofei614/SocketLog 更多信息看这里:https://www.bbsmax.com/A/8Bz8L9Nyzx/ tp5配置co ...
- adduser Ubuntu添加sudo用户
第一种方法: 添加sudo用户 当你安装Ubuntu的时候,它会自动添加第一个用户到sudo组,允许这个用户通过键入其自身帐户密码来获得超级用户(root)身份.然而,系统不会再自动添加其他的用户到s ...
- SQL中间
-- 查询门诊挂号退费的账单:有4条记录 select * from `thc_rcm`.`Cs_AccountBill` a where a.orderSource = 1 and a.orderT ...
- 设置 Visual Studio IIS Express 站点局域网访问
Ø Visual Stuido 的 IIS Express运行一个网站时,默认地址是这样的:http://localhost:23167/Cache/Three,其中 localhost 表示本机, ...
- js强制将页面放到最大
<!DOCTYPE html> <html> <head> <title></title> <script language=&quo ...