LOJ 6277-6280 数列分块入门 1-4
数列分块是莫队分块的前置技能,练习一下
1.loj6277
给出一个长为n的数列,以及n个操作,操作涉及区间加法,单点查值。
直接分块+tag即可
#include <bits/stdc++.h>
#define ll long long
#define IO ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
#define pp pair<int,int>
#define rep(ii,a,b) for(int ii=a;ii<=b;ii++)
#define per(ii,a,b) for(int ii=a;ii>=b;ii--)
using namespace std;
const int maxn=1e5+10;
const int maxm=1e6+10;
const int INF=0x3f3f3f3f;
int casn,n,m,k;
int size;
ll num[maxn],tag[maxn];
int id[maxn];
void update(int s,int t,ll x){
for(int i=s;i<=min(id[s]*size,t);i++)
num[i]+=x;
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++)
num[i]+=x;
}
for(int i=id[s]+1;i<=id[t]-1;i++){
tag[i]+=x;
}
} int main(){
//#define test
#ifdef test
freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
#endif
scanf("%d",&n);
size=sqrt(n);
for(int i=1;i<=n;i++) scanf("%lld",num+i);
for(int i=1;i<=n;i++) id[i]=(i-1)/size+1;
for(int i=1;i<=n;i++){
int flag,a,b;
ll c;
scanf("%d%d%d%lld",&flag,&a,&b,&c);
if(flag==0) update(a,b,c);
else printf("%lld\n",num[b]+tag[id[b]]);
}
#ifdef test
fclose(stdin);fclose(stdout);system("out.txt");
#endif
return 0;
}
2.loj6278
给出一个长为n的数列,以及n个操作,操作涉及区间加法,询问区间内小于某个值x的元素个数。
分块,,用vector可以很方便得保存排序结果,每次修改两端应该重新排序
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e5+10;
const int maxm=1e6+10;
const int INF=0x3f3f3f3f;
int casn,n,m,k;
int size;
ll num[maxn],tag[maxn];
vector<ll>rk[maxn/100];
int id[maxn];
void reset(int pos){
rk[pos].clear();
for(int i=(pos-1)*size+1;i<=min(pos*size,n);i++)
rk[pos].push_back(num[i]);
sort(rk[pos].begin(),rk[pos].end());
}
void update(int s,int t,ll x){
for(int i=s;i<=min(id[s]*size,t);i++)
num[i]+=x;
reset(id[s]);
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++)
num[i]+=x;
reset(id[t]);
}
for(int i=id[s]+1;i<=id[t]-1;i++){
tag[i]+=x;
}
}
int query(int s,int t,ll k){
int ans=0;
for(int i=s;i<=min(id[s]*size,t);i++){
if(num[i]+tag[id[s]]<k)ans++;
}
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++){
if(num[i]+tag[id[t]]<k)ans++;
}
}
for(int i=id[s]+1;i<=id[t]-1;i++){
ans+=lower_bound(rk[i].begin(),rk[i].end(),(ll)k-tag[i])-rk[i].begin();
}
return ans;
}
int main(){
//#define test
#ifdef test
freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
#endif
scanf("%d",&n);
size=sqrt(n);
for(int i=1;i<=n;i++) scanf("%lld",num+i);
for(int i=1;i<=n;i++) {
id[i]=(i-1)/size+1;
rk[id[i]].push_back(num[i]);
}
for(int i=1;i<=n;i++)
sort(rk[i].begin(),rk[i].end());
for(int i=1;i<=n;i++){
int flag,a,b;
ll c;
scanf("%d%d%d%lld",&flag,&a,&b,&c);
if(flag==0) update(a,b,c);
else printf("%d\n",query(a,b,c*c));
}
#ifdef test
fclose(stdin);fclose(stdout);system("out.txt");
#endif
return 0;
}
3.loj6279
给出一个长为n的数列,以及n个操作,操作涉及区间加法,询问区间内小于某个值x的前驱(比其小的最大元素)
用多重集合维护块内元素,注意两端的部分需要重建
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e5+10;
const int maxm=1e6+10;
const int INF=0x3f3f3f3f;
int casn,n,m,k;
int size;
ll num[maxn],tag[maxn];
multiset<ll>vis[maxn/100];
int id[maxn];
void update(int s,int t,ll x){
for(int i=s;i<=min(id[s]*size,t);i++){
vis[id[s]].erase(num[i]);
num[i]+=x;
vis[id[s]].insert(num[i]);
}
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++){
vis[id[t]].erase(num[i]);
num[i]+=x;
vis[id[t]].insert(num[i]);
}
}
for(int i=id[s]+1;i<=id[t]-1;i++){
tag[i]+=x;
}
}
ll query(int s,int t,ll k){
ll ans=-1;
for(int i=s;i<=min(id[s]*size,t);i++){
ll tmp=num[i]+tag[id[s]];
if(tmp<k) ans=max(ans,tmp);
}
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++){
ll tmp=num[i]+tag[id[t]];
if(tmp<k) ans=max(ans,tmp);
}
}
for(int i=id[s]+1;i<=id[t]-1;i++){
int tmp=k-tag[i];
multiset<ll>::iterator it=vis[i].lower_bound(tmp);
if(it==vis[i].begin()) continue;
--it;
ans=max(ans,*it+tag[i]);
}
return ans;
}
int main(){
//#define test
#ifdef test
freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
#endif
scanf("%d",&n);
size=sqrt(n);
for(int i=1;i<=n;i++) scanf("%lld",num+i);
for(int i=1;i<=n;i++) {
id[i]=(i-1)/size+1;
vis[id[i]].insert(num[i]);
}
for(int i=1;i<=n;i++){
int flag,a,b;
ll c;
scanf("%d%d%d%lld",&flag,&a,&b,&c);
if(flag==0) update(a,b,c);
else printf("%d\n",query(a,b,c));
}
#ifdef test
fclose(stdin);fclose(stdout);system("out.txt");
#endif
return 0;
}
4.loj6280
给出一个长为n的数列,以及n个操作,操作涉及区间加法,区间求和。
直接分块,同时需要维护一个块元素和
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e5+10;
const int maxm=1e6+10;
const int INF=0x3f3f3f3f;
int casn,n,m,k;
int size;
ll num[maxn],tag[maxn],sum[maxn];
int id[maxn];
void update(int s,int t,ll x){
for(int i=s;i<=min(id[s]*size,t);i++){
num[i]+=x;
}
sum[id[s]]+=x*(min(id[s]*size,t)-s+1);
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++){
num[i]+=x;
}
sum[id[t]]+=(t-(id[t]-1)*size)*x;
}
for(int i=id[s]+1;i<=id[t]-1;i++){
tag[i]+=x;
}
}
ll query(int s,int t){
ll ans=0;
for(int i=s;i<=min(id[s]*size,t);i++){
ans+=num[i]+tag[id[s]];
}
if(id[s]!=id[t]){
for(int i=(id[t]-1)*size+1;i<=t;i++){
ans+=num[i]+tag[id[t]];
}
}
for(int i=id[s]+1;i<=id[t]-1;i++){
ans+=sum[i]+tag[i]*size;
}
return ans;
}
int main(){
//#define test
#ifdef test
freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
#endif
scanf("%d",&n);
size=sqrt(n);
for(int i=1;i<=n;i++) scanf("%lld",num+i);
for(int i=1;i<=n;i++) {
id[i]=(i-1)/size+1;
sum[id[i]]+=num[i];
}
for(int i=1;i<=n;i++){
int flag,a,b;
ll c;
scanf("%d%d%d%lld",&flag,&a,&b,&c);
if(flag==0) update(a,b,c);
else printf("%lld\n",query(a,b)%(c+1));
}
#ifdef test
fclose(stdin);fclose(stdout);system("out.txt");
#endif
return 0;
}
(其实LOJ的题目数据比较水,欢迎hack我)
LOJ 6277-6280 数列分块入门 1-4的更多相关文章
- LOJ 6277:数列分块入门 1(分块入门)
#6277. 数列分块入门 1 内存限制:256 MiB时间限制:100 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计讨论 3 测试数据 题目描述 给出一 ...
- LOJ #6280. 数列分块入门 4-分块(区间加法、区间求和)
#6280. 数列分块入门 4 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 题目描述 给出一个 ...
- loj 6278 6279 数列分块入门 2 3
参考:「分块」数列分块入门1 – 9 by hzwer 2 Description 给出一个长为\(n\)的数列,以及\(n\)个操作,操作涉及区间加法,询问区间内小于某个值\(x\)的元素个数. 思 ...
- LOJ#6280. 数列分块入门 4
另外开一个数组维护每一个块内的总和. 给区间加值是,残余的块一个一个点更新,整个的块一次性更新 查询的时候也是,残余的块一个一个点加,整个的块一次性加 #include<map> #inc ...
- LibreOJ 6280 . 数列分块入门 4
题目链接:https://loj.ac/problem/6280 加一个数组保存块的和. 代码: #include<iostream> #include<cstring> #i ...
- 【LibreOJ 6277】数列分块入门 1 (分块)
emmm-学下分块~ 区间:数列中连续一段的元素 区间操作:将某个区间[a,b]的所有元素进行某种改动的操作 块:我们将数列划分成若干个不相交的区间,每个区间称为一个块 整块:在一个区间操作时,完整包 ...
- LibreOJ 6280 数列分块入门 4(分块区间加区间求和)
题解:分块的区间求和比起线段树来说实在是太好写了(当然,复杂度也高)但这也是没办法的事情嘛.总之50000的数据跑了75ms左右还是挺优越的. 比起单点询问来说,区间询问和也没有复杂多少,多开一个su ...
- 【LOJ#6277】数列分块1
题目大意:维护一个长度为 N 的序列,支持区间修改.单点查询. 代码如下 #include <bits/stdc++.h> using namespace std; const int m ...
- LOJ——#6277. 数列分块入门 1
~~推荐播客~~ 「分块」数列分块入门1 – 9 by hzwer 浅谈基础根号算法——分块 博主蒟蒻,有缘人可直接观摩以上大佬的博客... #6277. 数列分块入门 1 题目大意: 给出一个长为 ...
- 数列分块入门1-9 By hzwer
声明 持续更新,因为博主也是正在学习分块的知识,我很菜的,菜的抠$jio$ 写在前面 分块是个很暴力的算法,但却比暴力优秀的多,分块算法的时间复杂度一般是根号的,他的主要思想是将一个长度是$n$的数列 ...
随机推荐
- Uncaught DOMException: Failed to construct 'WebSocket': The URL '/qibao/websocket/service1000' is invalid.
出现这个问题是构造 WebSocket失败了. js代码改成 //实现化WebSocket对象,指定要连接的服务器地址与端口 建立连接//等同于socket = new WebSocket(path+ ...
- 前端面试题整理—ajax篇
1.什么是Ajax和JSON,它们的优缺点 Ajax是全称是asynchronous JavaScript andXML,即异步JavaScript和xml,用于在Web页面中实现异步数据交互,实现页 ...
- NFine框架JqGrid导出选中行为Excel实现方法
客户端 function PostAndGetFileByUrl(url,type,postdata) { var temp; $.ajax({ url: url, type: type, data: ...
- 简单回射程序之处理accept返回EINTR错误的服务器程序版本
#include <stdio.h> #include <stdlib.h> #include <time.h> #include <errno.h> ...
- 课堂测试——jsp登录界面设计
实现结果:在login.jsp页面提交用户名和密码(可以验证是否为空),点击登录跳转到loginResult.jsp页面进行验证并显示结果 JSP + JDBC + MySQL login.jsp 设 ...
- 在vscode上 运行typescript 文件
安装nodejs 安装链接: https://nodejs.org/zh-cn/ 安装测试: node -v npm -v 安装typescript sudo npm install typescri ...
- webpack设置热更新
首先需要在package.json中配置一个脚本参数 --hot "dev": "webpack-dev-server --mode development --hot& ...
- [国家集训队] Crash 的文明世界
不错的树形$ DP$的题 可为什么我自带大常数啊$ cry$ 链接:here 题意:给定一棵$ n$个节点的树,边权为$ 1$,对于每个点$ x$求$ \sum\limits_{i=1}^n dist ...
- linux一些比较重要的环境变量。配置文件
永久添加环境变量PATH 方法一:编辑/etc/profile.d/NAME.sh 写入这句话export PATH=/PATH/TO/SOMEWHRER:$PATH 永久修改动态库文件搜索路径 方法 ...
- mysql 8.0 ~ innodb与变量优化
一 innodb的优化 1 已完全不支持myisam引擎 2 将自增主键的计数器持久化到redo log中.每次计数器发生改变,都会将其写入到redo log中.如果数据库发生重启,InnoDB ...