【洛谷P2966】Cow Toll Paths
题目大意:给定 N 个节点,M 条边的无向图,边有边权,点有点权,现给出 Q 个询问,每个询问查询两个节点之间的最短路径,这里最短路径的定义是两个节点之间的最短路径与这条路径中经过的节点点权的最大值之和。
题解:多源最短路问题应该用 floyd 算法来处理,由于最短路径涉及到路径中最大的点权,因此如何在决策阶段快速进行状态转移是这道题考虑的核心。若每次进行枚举点权,复杂度显然爆炸。因此在开始时对点权进行排序,这样对于带点权的最短路径的决策仅由 i,j,k 三个点点权的最大值决定,时间复杂度为 \(O(n^3)\)。
另:单纯计算多源最短路时,各个节点之间的顺序对答案无影响。(显然)
代码如下
#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define all(x) x.begin(),x.end()
#define cls(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
const int dx[]={0,1,0,-1};
const int dy[]={1,0,-1,0};
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const int maxn=251;
const double eps=1e-6;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll sqr(ll x){return x*x;}
inline ll read(){
ll x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
/*--------------------------------------------------------*/
int n,m,q;
int f[maxn][maxn],g[maxn][maxn],mpp[maxn];
struct node{int id,val;}ver[maxn];
bool cmp(const node &a,const node &b){return a.val<b.val;}
void read_and_parse(){
cls(f,0x3f),cls(g,0x3f);
for(int i=1;i<=n;i++)f[i][i];
n=read(),m=read(),q=read();
for(int i=1;i<=n;i++)ver[i].id=i,ver[i].val=read();
sort(ver+1,ver+n+1,cmp);
for(int i=1;i<=n;i++)mpp[ver[i].id]=i;
for(int i=1;i<=m;i++){
int x=read(),y=read(),z=read();
f[mpp[x]][mpp[y]]=f[mpp[y]][mpp[x]]=min(z,f[mpp[y]][mpp[x]]);
}
}
void floyd(){
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
g[i][j]=min(g[i][j],f[i][j]+max(max(ver[i].val,ver[j].val),ver[k].val));
}
}
void solve(){
floyd();
while(q--){
int s=mpp[read()],t=mpp[read()];
printf("%d\n",g[s][t]);
}
}
int main(){
read_and_parse();
solve();
return 0;
}
【洛谷P2966】Cow Toll Paths的更多相关文章
- P2966 [USACO09DEC]牛收费路径Cow Toll Paths
P2966 [USACO09DEC]牛收费路径Cow Toll Paths 题目描述 Like everyone else, FJ is always thinking up ways to incr ...
- P2966 [USACO09DEC]Cow Toll Paths G
题意描述 Cow Toll Paths G 这道题翻译的是真的不错,特别是第一句话 给定一张有 \(n\) 个点 \(m\) 条边的无向图,每条边有边权,每个点有点权. 两点之间的路径长度为所有边权 ...
- <USACO09DEC>过路费Cow Toll Pathsの思路
啊好气 在洛谷上A了之后 隔壁jzoj总wa 迷茫了很久.发现那题要文件输入输出 生气 肥肠不爽 Description 跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦 ...
- 洛谷 P2966 [USACO09DEC]牛收费路径Cow Toll Paths
题目描述 Like everyone else, FJ is always thinking up ways to increase his revenue. To this end, he has ...
- 洛谷 2966 2966 [USACO09DEC]牛收费路径Cow Toll Paths
[题意概述] 给出一个图,点有正点权,边有正边权,通过两点的代价为两点间的最短路加上路径通过的点的点权最大值. 有M个询问,每次询问通过两点的代价. [题解] 先把点按照点权从小到大排序,然后按照这个 ...
- Luogu P2966 [USACO09DEC]牛收费路径Cow Toll Paths
题目描述 Like everyone else, FJ is always thinking up ways to increase his revenue. To this end, he has ...
- [Luogu P2966][BZOJ 1774][USACO09DEC]牛收费路径Cow Toll Paths
原题全英文的,粘贴个翻译题面,经过一定的修改. 跟所有人一样,农夫约翰以宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生财之道.为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道 ...
- [USACO09DEC]牛收费路径Cow Toll Paths(floyd、加路径上最大点权值的最短路径)
https://www.luogu.org/problem/P2966 题目描述 Like everyone else, FJ is always thinking up ways to increa ...
- [USACO09DEC] Cow Toll Paths
https://www.luogu.org/problem/show?pid=2966 题目描述 Like everyone else, FJ is always thinking up ways t ...
随机推荐
- 微信小程序自定义组件
要做自定义组件,我们先定一个小目标,比如说我们在小程序中实现一下 WEUI 中的弹窗组件,基本效果图如下. Step1 我们初始化一个小程序(本示例基础版本库为 1.7 ),删掉里面的示例代码,并新建 ...
- python之路--第一类对象,函数名,变量名
一 . 第一类对象 函数对象可以像变量一样进行赋值 , 还可以作为列表的元素进行使用 可以作为返回值返回 , 可以作为参数进行传递 def func(): def people(): print('金 ...
- 记录SSM框架项目迁移SpringBoot框架-----pom.xml的迁移
第一步:迁移pom.xml文件(去除spring相关的依赖) SSM中的pom: <project xmlns="http://maven.apache.org/POM/4.0.0&q ...
- WPF实现Windows资源管理器(附源码)
今天我来写一篇关于利用WPF来实现Windows的资源管理器功能,当然只是局部实现这个功能,因为在很多时候我们需要来实现对本机资源的管理,当然我们可以使用OpenFileDialog dialog ...
- 莫烦scikit-learn学习自修第五天【训练模型的属性】
1.代码实战 #!/usr/bin/env python #!_*_ coding:UTF-8 _*_ from sklearn import datasets from sklearn.linear ...
- Delphi MDI 子窗体的创建和销毁 [zhuan]
1.如果要创建一个mdi child,先看是否有这个child 存在,如果有,则用它,如果没有再创建 //该函数判断MDI 子窗体是否存在,再进行创建和显示function isInclude(for ...
- 猜数字游戏 在控制台运行--java详解!了;来玩
import java.util.Scanner;//导入包 import java.util.Scanner; 注意格式 符号的使用 public class Demo{ //猜数字游戏 练习 pu ...
- idea -> Error during artifact deployment. See server log for details.
用idea导入eclipse工程,运行时,报Error during artifact deployment. See server log for details. 谷歌,最后发现是最新 tomc ...
- SpringMvc父子容器
使用监听器listener来加载spring的配置文件:如下 <context-param> <param-name>contextConfigLocation</p ...
- How to flash Havoc on enchilada
update fastboot and adb fastboot oem unlock adb debug enchilada reboot to fastboot fastboot devices ...