题目大意:给定 N 个节点,M 条边的无向图,边有边权,点有点权,现给出 Q 个询问,每个询问查询两个节点之间的最短路径,这里最短路径的定义是两个节点之间的最短路径与这条路径中经过的节点点权的最大值之和。

题解:多源最短路问题应该用 floyd 算法来处理,由于最短路径涉及到路径中最大的点权,因此如何在决策阶段快速进行状态转移是这道题考虑的核心。若每次进行枚举点权,复杂度显然爆炸。因此在开始时对点权进行排序,这样对于带点权的最短路径的决策仅由 i,j,k 三个点点权的最大值决定,时间复杂度为 \(O(n^3)\)。

另:单纯计算多源最短路时,各个节点之间的顺序对答案无影响。(显然)

代码如下

#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define all(x) x.begin(),x.end()
#define cls(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
const int dx[]={0,1,0,-1};
const int dy[]={1,0,-1,0};
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const int maxn=251;
const double eps=1e-6;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll sqr(ll x){return x*x;}
inline ll read(){
ll x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
/*--------------------------------------------------------*/ int n,m,q;
int f[maxn][maxn],g[maxn][maxn],mpp[maxn];
struct node{int id,val;}ver[maxn];
bool cmp(const node &a,const node &b){return a.val<b.val;} void read_and_parse(){
cls(f,0x3f),cls(g,0x3f);
for(int i=1;i<=n;i++)f[i][i];
n=read(),m=read(),q=read();
for(int i=1;i<=n;i++)ver[i].id=i,ver[i].val=read();
sort(ver+1,ver+n+1,cmp);
for(int i=1;i<=n;i++)mpp[ver[i].id]=i;
for(int i=1;i<=m;i++){
int x=read(),y=read(),z=read();
f[mpp[x]][mpp[y]]=f[mpp[y]][mpp[x]]=min(z,f[mpp[y]][mpp[x]]);
}
} void floyd(){
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
g[i][j]=min(g[i][j],f[i][j]+max(max(ver[i].val,ver[j].val),ver[k].val));
}
} void solve(){
floyd();
while(q--){
int s=mpp[read()],t=mpp[read()];
printf("%d\n",g[s][t]);
}
} int main(){
read_and_parse();
solve();
return 0;
}

【洛谷P2966】Cow Toll Paths的更多相关文章

  1. P2966 [USACO09DEC]牛收费路径Cow Toll Paths

    P2966 [USACO09DEC]牛收费路径Cow Toll Paths 题目描述 Like everyone else, FJ is always thinking up ways to incr ...

  2. P2966 [USACO09DEC]Cow Toll Paths G

    题意描述 Cow Toll Paths G 这道题翻译的是真的不错,特别是第一句话 给定一张有 \(n\) 个点 \(m\) 条边的无向图,每条边有边权,每个点有点权. 两点之间的路径长度为所有边权 ...

  3. <USACO09DEC>过路费Cow Toll Pathsの思路

    啊好气 在洛谷上A了之后 隔壁jzoj总wa 迷茫了很久.发现那题要文件输入输出 生气 肥肠不爽 Description 跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦 ...

  4. 洛谷 P2966 [USACO09DEC]牛收费路径Cow Toll Paths

    题目描述 Like everyone else, FJ is always thinking up ways to increase his revenue. To this end, he has ...

  5. 洛谷 2966 2966 [USACO09DEC]牛收费路径Cow Toll Paths

    [题意概述] 给出一个图,点有正点权,边有正边权,通过两点的代价为两点间的最短路加上路径通过的点的点权最大值. 有M个询问,每次询问通过两点的代价. [题解] 先把点按照点权从小到大排序,然后按照这个 ...

  6. Luogu P2966 [USACO09DEC]牛收费路径Cow Toll Paths

    题目描述 Like everyone else, FJ is always thinking up ways to increase his revenue. To this end, he has ...

  7. [Luogu P2966][BZOJ 1774][USACO09DEC]牛收费路径Cow Toll Paths

    原题全英文的,粘贴个翻译题面,经过一定的修改. 跟所有人一样,农夫约翰以宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生财之道.为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道 ...

  8. [USACO09DEC]牛收费路径Cow Toll Paths(floyd、加路径上最大点权值的最短路径)

    https://www.luogu.org/problem/P2966 题目描述 Like everyone else, FJ is always thinking up ways to increa ...

  9. [USACO09DEC] Cow Toll Paths

    https://www.luogu.org/problem/show?pid=2966 题目描述 Like everyone else, FJ is always thinking up ways t ...

随机推荐

  1. vue+webpack项目打包后背景图片加载不出来问题解决

    在做VUE +的WebPack脚手架项目打包完成后,在IIS服务器上运行发现项目中的背景图片加载不出来检查项目代码发现是因为CSS文件中,背景图片引用的路径问题;后来通过修改配置文件,问题终于解决了, ...

  2. docker 操作镜像的基本操作

    以安装mysql为例 1.拉取镜像 docker pull mysql 错误的启动 [root@localhost ~]# docker run --name mysql01 -d mysql 42f ...

  3. Sublime Text3配置

    { "default_encoding": "UTF-8", "font_size": 16.0, "tab_size" ...

  4. 【转】 Golang输入输出格式化Printf Springf Fprintf..

    // Go 在传统的`printf` 中对字符串格式化提供了优异的支持. // 这里是一些基本的字符串格式化的人物的例子. package main import "fmt" im ...

  5. ubuntu 有些软件中不能输入中文

    如果Ubuntu设定的是英文语言,在各种软件例如wps等中很有可能就不能输入中文.这种情况,我们的解决方案是,把中文输入法加到软件的启动文件中,如何加呢?把下面内容加进去就可以解决: export X ...

  6. react 入坑笔记(三) - Props

    React Props props - 参数. 组件类 React.Component 有个 defaultProps 属性,以 class xxx extend React.Component 形式 ...

  7. zabbix批量操作

    利用zabbix-api来实现zabbix的主机的批量添加,主机的查找,删除等等操作. 代码如下: #!/usr/bin/env python #-*- coding: utf- -*- import ...

  8. NIKKEI Programming Contest 2019 翻车记

    A:签到. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> ...

  9. Bootstrap 框架

    一,Bootstrap介绍 Bootstrap是Twitter开源的基于HTML.CSS.JavaScript的前端框架. 它是为实现快速开发Web应用程序而设计的一套前端工具包. 它支持响应式布局, ...

  10. [NOIp2016] 蚯蚓

    类型:单调队列 传送门:>Here< 题意:有$N$只蚯蚓,每秒都会伸长$q$.每一次都会有人选出最长的一条切成两半,长度分别是$\left \lfloor px \right \rflo ...