Luogu 4751 动态DP 模板
题面
动态求最大独立集
题解
树剖后用矩阵转移。
具体见Tweetuzki的洛谷博客
CODE
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
char cb[1<<15],*cs=cb,*ct=cb;
#define getc() (cs==ct&&(ct=(cs=cb)+fread(cb,1,1<<15,stdin),cs==ct)?0:*cs++)
inline void read(int &x) {
char ch; int flg=1; while(!isdigit(ch=getc()))if(ch=='-')flg=-flg;
for(x=ch-'0';isdigit(ch=getc());x=x*10+ch-'0'); x*=flg;
}
const int MAXN = 1000005;
const int INF = 1000000000;
int n, m, V[MAXN], fir[MAXN], nxt[MAXN<<1], to[MAXN<<1], cnt;
inline void link(int u, int v) {
to[++cnt] = v; nxt[cnt] = fir[u]; fir[u] = cnt;
to[++cnt] = u; nxt[cnt] = fir[v]; fir[v] = cnt;
}
int tmr, fa[MAXN], dfn[MAXN], tp[MAXN], bt[MAXN], son[MAXN], sz[MAXN], seq[MAXN];
struct mat {
int a[2][2];
int* operator[](int x) { return a[x]; }
mat operator*(const mat &o)const {
mat re;
for(int i = 0; i < 2; ++i)
for(int j = 0; j < 2; ++j)
re.a[i][j] = max(a[i][0]+o.a[0][j], a[i][1]+o.a[1][j]);
return re;
}
}t[MAXN<<2], val[MAXN];
void dfs1(int u, int ff) {
fa[u] = ff; sz[u] = 1;
for(int i = fir[u], v; i; i = nxt[i])
if((v=to[i]) != ff) {
dfs1(v, u), sz[u] += sz[v];
(sz[v] > sz[son[u]]) && (son[u] = v);
}
}
int f[MAXN][2];
void dfs2(int u, int top) {
tp[u] = top; bt[top] = u;
seq[dfn[u]=++tmr] = u;
if(son[u]) dfs2(son[u], top);
for(int i = fir[u], v; i; i = nxt[i])
if((v=to[i]) != fa[u] && v != son[u])
dfs2(v, v);
}
void dp(int u) {
f[u][0] = 0; f[u][1] = V[u];
for(int i = fir[u], v; i; i = nxt[i])
if((v=to[i]) != fa[u])
dp(v),
f[u][0] += max(f[v][0], f[v][1]),
f[u][1] += f[v][0];
}
void build(int i, int l, int r) {
if(l == r) {
int f0 = 0, f1 = V[seq[l]];
for(int j = fir[seq[l]], v; j; j = nxt[j])
if((v=to[j]) != fa[seq[l]] && v != son[seq[l]])
f0 += max(f[v][0], f[v][1]),
f1 += f[v][0];
val[l] = t[i] = (mat){ {{f0, f0} , {f1, -INF}} };
return;
}
int mid = (l + r) >> 1;
build(i<<1, l, mid);
build(i<<1|1, mid+1, r);
t[i] = t[i<<1] * t[i<<1|1];
}
void update(int i, int l, int r, int x) {
if(l == r) { t[i] = val[l]; return; }
int mid = (l + r) >> 1;
if(x <= mid) update(i<<1, l, mid, x);
else update(i<<1|1, mid+1, r, x);
t[i] = t[i<<1] * t[i<<1|1];
}
mat query(int i, int l, int r, int x, int y) {
if(x == l && r == y) return t[i];
int mid = (l + r) >> 1;
if(y <= mid) return query(i<<1, l, mid, x, y);
if(x > mid) return query(i<<1|1, mid+1, r, x, y);
return query(i<<1, l, mid, x, mid) * query(i<<1|1, mid+1, r, mid+1, y);
}
void modify(int u, int W) {
val[dfn[u]][1][0] += W-V[u]; V[u]=W;
while(u) {
mat pre = query(1, 1, n, dfn[tp[u]], dfn[bt[tp[u]]]);
update(1, 1, n, dfn[u]);
mat now = query(1, 1, n, dfn[tp[u]], dfn[bt[tp[u]]]);
u = fa[tp[u]]; if(!u) return; int x = dfn[u];
int p0 = pre[0][0], p1 = pre[1][0];
int n0 = now[0][0], n1 = now[1][0];
val[x][0][0] = val[x][0][1] = val[x][0][0] + max(n0, n1) - max(p0, p1);
val[x][1][0] = val[x][1][0] + n0 - p0;
}
}
int main () {
read(n), read(m);
for(int i = 1; i <= n; ++i) read(V[i]);
for(int i = 1, u, v; i < n; ++i) read(u), read(v), link(u, v);
dfs1(1, 0), dfs2(1, 1), dp(1);
build(1, 1, n);
int x, y, lstans=0;
while(m--) {
read(x), read(y); x^=lstans; modify(x, y);
mat ans = query(1, 1, n, 1, dfn[bt[1]]);
printf("%d\n", lstans=max(ans[0][0], ans[1][0]));
}
}
加强版只过80分
Luogu 4751 动态DP 模板的更多相关文章
- 【洛谷P4719】动态dp 动态dp模板
题目大意:给你一颗$n$个点的树,点有点权,有$m$次操作,每次操作给定$x$,$y$,表示修改点$x$的权值为$y$. 你需要在每次操作之后求出这棵树的最大权独立集的权值大小. 数据范围:$n,m≤ ...
- Luogu P4643 【模板】动态dp
题目链接 Luogu P4643 题解 猫锟在WC2018讲的黑科技--动态DP,就是一个画风正常的DP问题再加上一个动态修改操作,就像这道题一样.(这道题也是PPT中的例题) 动态DP的一个套路是把 ...
- LG4719 【模板】动态dp 及 LG4751 动态dp【加强版】
题意 题目描述 给定一棵\(n\)个点的树,点带点权. 有\(m\)次操作,每次操作给定\(x,y\),表示修改点\(x\)的权值为\(y\). 你需要在每次操作之后求出这棵树的最大权独立集的权值大小 ...
- 洛谷4719 【模板】动态dp
题目:https://www.luogu.org/problemnew/show/P4719 关于动态DP似乎有猫锟的WC2018论文,但找不见:还是算了. http://immortalco.blo ...
- 洛谷P4719 【模板】"动态 DP"&动态树分治
[模板]"动态 DP"&动态树分治 第一道动态\(DP\)的题,只会用树剖来做,全局平衡二叉树什么的就以后再学吧 所谓动态\(DP\),就是在原本的\(DP\)求解的问题上 ...
- 【模板】动态 DP
luogu传送门. 最近学了一下动态dp,感觉没有想象的难. 动态DP simple的DP是这样的: 给棵树,每个点给个权值,求一下最大权独立集. 动态DP是这样的: 给棵树,每个点给个权值还到处改, ...
- 洛谷P4719 【模板】动态dp(ddp LCT)
题意 题目链接 Sol 动态dp板子题.有些细节还没搞懂,待我研究明白后再补题解... #include<bits/stdc++.h> #define LL long long using ...
- 【洛谷】P4643 【模板】动态dp
题解 在冬令营上听到冬眠的东西,现在都是板子了猫锟真的是好毒瘤啊(雾) (立个flag,我去thusc之前要把WC2018T1乱搞过去= =) 好的,我们可以参考猫锟的动态动态dp的课件,然后你发现你 ...
- 「LGP4719【模板】动态dp」
题目 尽管知道这个东西应该不会考了,但是还是学一学吧 哎要是去年noip之前学该多好 动态\(dp\)就是允许修改的一个\(dp\),比如这道题,我们都知道这是一个树上最大点权独立集 众所周知方程长这 ...
随机推荐
- PyTorch 常用代码段整理
基础配置 检查 PyTorch 版本 torch.__version__ # PyTorch version torch.version.cuda ...
- Logstash配置安装
logstash配置 http.host: xpack.monitoring.enabled: true xpack.monitoring.elasticsearch.username:"l ...
- MySQL容量规划和性能测试
性能容量关键指标: 每秒tps,峰值tps 基础数据量,日均增长数据量 最大连接数 内存分配 IOPS 重点关注指标: 业务指标: 每秒并发用户请求.每秒订单数.用户请求响应时长 折算成性能指标: q ...
- js中__proto__和prototype的区别和关系?(转)
转自知乎:https://www.zhihu.com/question/34183746
- Fiddler抓取https原理
首先fiddler截获客户端浏览器发送给服务器的https请求, 此时还未建立握手.第一步, fiddler向服务器发送请求进行握手, 获取到服务器的CA证书, 用根证书公钥进行解密, 验证服务器数据 ...
- PAT-1030 Travel Plan (30 分) 最短路最小边权 堆优化dijkstra+DFS
PAT 1030 最短路最小边权 堆优化dijkstra+DFS 1030 Travel Plan (30 分) A traveler's map gives the distances betwee ...
- .NET Framework 4安装问题
1.安装时,系统提示:运行此安装程序之前,必须安装 32 位 Windows 映像处理组件(WIC). http://www.microsoft.com/downloads/zh-cn/details ...
- python列表操作大全
Python列表操作大全 对于python列表的理解可以和C语言里面的数组进行比较性的记忆与对照,它们比较相似,对于python里面列表的定义可以直接用方括号里加所包含对象的方法,并且python的列 ...
- kvm第三章--虚拟化存储管理
- 手写DAO框架(五)-DAO层实现
-------前篇:手写DAO框架(四)-SQL执行--------- 前言 通过上一篇,可以通过传入sql和对应的参数,可以执行sql并返回结果.但是对于一个DAO框架来说,要尽量的面向对象编程,也 ...