• A decorator is a callable that takes another function as argument (the decorated function). The decorator may perform some processing with the decorated function, and returns it or replaces it with another function or callable object.

1. Variable Scope Rules

b = 6
def f1(a):
print(a) # 3
print(b) # 6
f1(3)
b = 6
def f2(a):
print(a) # 3
print(b) # UnboundLocalError: local variable 'b' referenced before assignment
b = 9
f2(3) # 1. When Python compiles the body of the function, it decides that b is a local
# variable because it's assigned within the function.
# 2. Python does not require you to declare variables, but assumes that a variable
# assigned in the body of a function is local
b = 6
def f3(a):
global b # declare
print(a) # 3
print(b) # 6
b = 9
f3(3)

2. Closures

  • Actually, a closure is a function with an extended scope that encompasses nonglobal variables referenced in the body of the function but not defined there. It does not matter whether the function is anonymous or not; what matters is that it can access nonglobal variables that are defined outside of its body.
  • A closure is a function that retains the bindings of the free variables that exist when the function is defined, so that they can be used later when the function is invoked and the defining scope is no longer available.
  • The only situation in which a function may need to deal with external variables that are nonglobal is when it is nested in another function.
def make_averager():
series = []
def averager(new_value):
series.append(new_value)
total = sum(series)
return total / len(series)
return averager avg = make_averager()
print avg(10) # 10
print avg(12) # 11
print avg(14) # 12
print avg.__code__.co_varnames # ('new_value', 'total')
print avg.__code__.co_freevars # ('series',)
print avg.__closure__ # (<cell at 0x1030d1280: list object at 0x1030a97e8>,)
print avg.__closure__[0].cell_contents # [10, 12, 14]

  • free variable: a variable that is not bound in the local scope.

3. The nonlocal Declaration

def make_averager():
count = 0
total = 0
def averager(new_value):
count += 1
total += new_value
return total / count
return averager avg = make_averager()
print avg(10) # UnboundLocalError: local variable 'count' referenced before assignment # 1. We actually assign count in the body of averager, and that makes it a local variable.
# 2. We didn't have this problem before, because we never assigned to the series name,
# we only called series.append and invoked sum and len on it.
# 3. With immutable types, if you try to rebind them, then you are implicitly creating a
# local variable, it's no longer a free variable, therefore it is not saved in the closure.
def make_averager():
count = 0
total = 0
def averager(new_value):
nonlocal count, total # **********
count += 1
total += new_value
return total / count
return averager avg = make_averager()
print(avg(10)) # 10.0 # 1. The nonlocal declaration was introduced in Python 3. It lets you flag a variable as a
# free variable even when it is assigned a new value within the function.

4. Implementing a Simple Decorator

  • Typical behavior of a decorator: It replaces the decorated function with a new function that accepts the same arguments and (usually) returns whatever the decorated function was supposed to return, while also doing some extra processing.
def deco(func):
print('running deco()')
print('func -> %s' % str(func))
def inner():
print('running inner()')
return inner @deco # target = deco(target)
def target():
print('running target()') target()
# running deco() # executed immediately when the module is loaded
# func -> <function target at 0x106c460c8>
# running inner()
print(target.__name__) # inner (function is replaced)
import time
FMT = '[{elapsed:0.8f}s] {name}({arg_str}) -> {result}'
def clock(func):
def clocked(*args, **kwargs):
t0 = time.time()
result = func(*args, **kwargs)
elapsed = time.time() - t0 # 用时
name = func.__name__
arg_lst = []
if args:
arg_lst.append(', '.join(repr(arg) for arg in args))
if kwargs:
pairs = ['%s=%r' % (k, w) for k, w in sorted(kwargs.items())]
arg_lst.append(', '.join(pairs))
arg_str = ', '.join(arg_lst)
print(FMT.format(**locals())) # any local variable of clocked
return result
return clocked @clock
def snooze(seconds):
time.sleep(seconds) @clock
def factorial(n):
return 1 if n < 2 else n*factorial(n-1) print('*' * 40, 'Calling snooze(.123)')
snooze(.123)
print('*' * 40, 'Calling factorial(6)')
print('6! =', factorial(6))
# ('****************************************', 'Calling snooze(.123)')
# [0.12694907s] snooze(0.123) -> None
# ('****************************************', 'Calling factorial(6)')
# [0.00000286s] factorial(1) -> 1
# [0.00004411s] factorial(2) -> 2
# [0.00005984s] factorial(3) -> 6
# [0.00007296s] factorial(4) -> 24
# [0.00014281s] factorial(5) -> 120
# [0.00015783s] factorial(6) -> 720
# ('6! =', 720)

5. Decorators in the Standard Library

5.1 functools.wraps

import functools
def deco(func):
@functools.wraps(func) # copy the relevant attributes from func to inner
def inner():
print('running inner()')
return inner @deco
def target():
"""i'm target"""
print('running target()') target() # running inner()
print(target.__name__) # target
print(target.__doc__) # i'm target

5.2 functools.lru_cache

  • An optimization technique that works by saving the results of previous invocations of an expensive function, avoiding repeat computations on previously used arguments.
  • The cache is limited by discarding the entries that have not been read for a while.
import functools
@functools.lru_cache() # Python 3
@clock
def fibonacci(n):
if n < 2:
return n
return fibonacci(n-2) + fibonacci(n-1) print(fibonacci(6))
# [0.00000095s] fibonacci(0) -> 0
# [0.00000215s] fibonacci(1) -> 1
# [0.00036097s] fibonacci(2) -> 1
# [0.00000167s] fibonacci(3) -> 2
# [0.00039101s] fibonacci(4) -> 3
# [0.00000095s] fibonacci(5) -> 5
# [0.00041699s] fibonacci(6) -> 8
# 8 # @functools.lru_cache(maxsize=128, typed=False)
# maxsize: how many call results are stored. (should be a power of 2)
# typed: True -> store results of different argument types separately (1 / 1.0)
# False -> don't store # [notes]: lru_cache uses a dict to store the results, all the arguments
# taken by the decorated function must be hashable.

5.3 functools.singledispatch

  • The new functools.singledispatch decorator in Python 3.4 allows each module to contribute to the overall solution, and lets you easily provide a specialized function even for classes that you can’t edit.
  • If you decorate a plain function with @singledispatch, it becomes a generic function: a group of functions to perform the same operation in different ways, depending on the type of the first argument.
from functools import singledispatch
from collections import abc
import numbers
import html @singledispatch # mark the base function handles the obj type.
def htmlize(obj):
content = html.escape(repr(obj))
return '<pre>{}</pre>'.format(content) @htmlize.register(str) # @«base_function».register(«type»).
def _(text): # name of the specialized functions is irrelevant
return '<p>{0}</p>'.format(html.escape(text)) @htmlize.register(numbers.Integral)
def _(n):
return '<pre>{0} (0x{0:x})</pre>'.format(n) @htmlize.register(tuple)
@htmlize.register(abc.MutableSequence)
def _(seq):
inner = '</li>\n<li>'.join(htmlize(item) for item in seq)
return '<ul>\n<li>' + inner + '</li>\n</ul>' print(htmlize(str)) # <pre><class 'str'></pre>
print(htmlize('<hello>')) # <p><hello></p>
print(htmlize(10)) # <pre>10 (0xa)</pre>
print(htmlize(['alpha', {3, 2, 1}]))
# <ul>
# <li><p>alpha</p></li>
# <li><pre>{1, 2, 3}</pre></li>
# </ul> # 1. Register the specialized functions to handle ABCs (abstract classes)
# instead of concrete implementations like int and list. (support more)
# 2. A notable quality of the singledispatch mechanism is that you can
# register specialized functions anywhere in the system, in any module.

6. Stacked Decorators

@d1
@d2
def f():
print('f') # f = d1(d2(f))

7. Parameterized Decorators

  • Make a decorator factory that takes those arguments and returns a decorator, which is then applied to the function to be decorated.
def outter(a=1):
def deco(func):
def inner():
if a == 1:
print(1)
else:
print(a)
return inner
return deco @outter()
def target1():
pass @outter(9)
def target2():
pass target1() # 1
target2() # 9

7. Function Decorators and Closures的更多相关文章

  1. 《流畅的Python》Data Structures--第7章 colsure and decorator

    Function Decorators and Closures 装饰器是用于增强函数的行为,理解它,就必须先理解闭包. Python3引入关键字nonlocal,如果要理解闭包,就必须了解它的所有方 ...

  2. 浅入浅出Typescript Decorators

    临时起的兴趣,想写一篇关于ts decorator的文章,就花小半天整理了一下...  这东西,在ES2017里好像也有... 文档的话看这里. 因为临时,就没想写太多文字介绍,带少许文字说明直接开撸 ...

  3. JavaScript Decorators 的简单理解

    Decorators,装饰器的意思, 所谓装饰就是对一个物件进行美化,让它变得更漂亮.最直观的例子就是房屋装修.你买了一套房子,但是毛坯房,你肯定不想住,那就对它装饰一下,床,桌子,电视,冰箱等一通买 ...

  4. TypeScript学习笔记(九):装饰器(Decorators)

    装饰器简介 装饰器(Decorators)为我们在类的声明及成员上通过元编程语法添加标注提供了一种方式. 需要注意的是:装饰器是一项实验性特性,在未来的版本中可能会发生改变. 若要启用实验性的装饰器特 ...

  5. 《dive into python3》 笔记摘录

    1.list can hold  arbitrary  objects and can expand dynamically as new items are added. A list is an  ...

  6. JAVASCRIPT的一些知识点梳理

    春节闲点,可以安心的梳理一下以前不是很清楚的东东.. 看的是以下几个URL: http://web.jobbole.com/82520/ http://blog.csdn.net/luoweifu/a ...

  7. [TypeScript] Reflection and Decorator Metadata

    TypeScript allows you to emit decorator metadata which enables more powerful features through reflec ...

  8. python函数与方法装饰器

    之前用python简单写了一下斐波那契数列的递归实现(如下),发现运行速度很慢. def fib_direct(n): assert n > 0, 'invalid n' if n < 3 ...

  9. 是什么让javascript变得如此奇妙

    What Makes Javascript Weird...and AWESOME -> First Class Functions -> Event-Driven Evironment ...

随机推荐

  1. centos安装软件

    rpm指令, 该指令安装文件后缀.rpm的可执行程序 yum指令 安装软件源代码,后缀为 .tar.gz(用gzip压缩过的tar包) rpm rpm软件包格式为 (一)查询系统装已经安装的软件信息 ...

  2. MySQL之LEFT JOIN中使用ON和WHRERE对表数据

    背景 left join在我们使用mysql查询的过程中可谓非常常见,比如博客里一篇文章有多少条评论.商城里一个货物有多少评论.一条评论有多少个赞等等.但是由于对join.on.where等关键字的不 ...

  3. python 智能玩别踩白块

    # encoding :utf-8import pyautoguifrom PIL import Imageimport time pyautogui.FAILSAFE = True time.sle ...

  4. WIN10家庭版添加"本地安全策略"

    新建文本文件 输入一下命令 @echo off pushd "%~dp0" dir /b C:\Windows\servicing\Packages\Microsoft-Windo ...

  5. 攻防世界MISC新手练习

    0x01 this_is_flag 对!!!这就是flag 0x02 ext3 题目提示是Linux光盘,附件下载下来 在linux中挂载mount linux /mnt 找一下flagtrings ...

  6. 在Ubuntu里搭建spark环境

    注意:1.搭建环境:Ubuntu64位,Linux(也有Windows的,我还没空试)       2.一般的配置jdk.Scala等的路径环境是在/etc/profile里配置的,我自己搭建的时候发 ...

  7. Golang中string和[]byte的对比

    golang string和[]byte的对比 为啥string和[]byte类型转换需要一定的代价? 为啥内置函数copy会有一种特殊情况copy(dst []byte, src string) i ...

  8. 一次记录 java非web项目部署到linux

    1.生成可执行jar 运行提示没有主清单属性 一番查找原因:是因为将项目生成jar包的时候,生成的MANIFEST.MF没有MAIN-CLASS,这里加上就可以了,后面的是项目启动类的完整类名 当然还 ...

  9. new , delete常见用法和与malloc,free比较

    new/delete是C++的运算符.malloc与free是C++/C语言的标准库函数,new/delete只能在C++中使用,malloc与free在C与C++中都能够使用,它们都可用于申请动态内 ...

  10. CDH6.2上配置各种对象存储

    cm-hdfs: ufile: 还需添加jar包 S3:是自带jar包 OSS: CDH6不需要下载包, CDH5需要 core-site.xml 的群集范围高级配置代码段(安全阀) fs.oss.e ...