7. Function Decorators and Closures
- A decorator is a callable that takes another function as argument (the decorated function). The decorator may perform some processing with the decorated function, and returns it or replaces it with another function or callable object.
1. Variable Scope Rules
b = 6
def f1(a):
print(a) # 3
print(b) # 6
f1(3)
b = 6
def f2(a):
print(a) # 3
print(b) # UnboundLocalError: local variable 'b' referenced before assignment
b = 9
f2(3) # 1. When Python compiles the body of the function, it decides that b is a local
# variable because it's assigned within the function.
# 2. Python does not require you to declare variables, but assumes that a variable
# assigned in the body of a function is local
b = 6
def f3(a):
global b # declare
print(a) # 3
print(b) # 6
b = 9
f3(3)
2. Closures
- Actually, a closure is a function with an extended scope that encompasses nonglobal variables referenced in the body of the function but not defined there. It does not matter whether the function is anonymous or not; what matters is that it can access nonglobal variables that are defined outside of its body.
- A closure is a function that retains the bindings of the free variables that exist when the function is defined, so that they can be used later when the function is invoked and the defining scope is no longer available.
- The only situation in which a function may need to deal with external variables that are nonglobal is when it is nested in another function.
def make_averager():
series = []
def averager(new_value):
series.append(new_value)
total = sum(series)
return total / len(series)
return averager avg = make_averager()
print avg(10) # 10
print avg(12) # 11
print avg(14) # 12
print avg.__code__.co_varnames # ('new_value', 'total')
print avg.__code__.co_freevars # ('series',)
print avg.__closure__ # (<cell at 0x1030d1280: list object at 0x1030a97e8>,)
print avg.__closure__[0].cell_contents # [10, 12, 14]

- free variable: a variable that is not bound in the local scope.
3. The nonlocal Declaration
def make_averager():
count = 0
total = 0
def averager(new_value):
count += 1
total += new_value
return total / count
return averager avg = make_averager()
print avg(10) # UnboundLocalError: local variable 'count' referenced before assignment # 1. We actually assign count in the body of averager, and that makes it a local variable.
# 2. We didn't have this problem before, because we never assigned to the series name,
# we only called series.append and invoked sum and len on it.
# 3. With immutable types, if you try to rebind them, then you are implicitly creating a
# local variable, it's no longer a free variable, therefore it is not saved in the closure.
def make_averager():
count = 0
total = 0
def averager(new_value):
nonlocal count, total # **********
count += 1
total += new_value
return total / count
return averager avg = make_averager()
print(avg(10)) # 10.0 # 1. The nonlocal declaration was introduced in Python 3. It lets you flag a variable as a
# free variable even when it is assigned a new value within the function.
4. Implementing a Simple Decorator
- Typical behavior of a decorator: It replaces the decorated function with a new function that accepts the same arguments and (usually) returns whatever the decorated function was supposed to return, while also doing some extra processing.
def deco(func):
print('running deco()')
print('func -> %s' % str(func))
def inner():
print('running inner()')
return inner @deco # target = deco(target)
def target():
print('running target()') target()
# running deco() # executed immediately when the module is loaded
# func -> <function target at 0x106c460c8>
# running inner()
print(target.__name__) # inner (function is replaced)
import time
FMT = '[{elapsed:0.8f}s] {name}({arg_str}) -> {result}'
def clock(func):
def clocked(*args, **kwargs):
t0 = time.time()
result = func(*args, **kwargs)
elapsed = time.time() - t0 # 用时
name = func.__name__
arg_lst = []
if args:
arg_lst.append(', '.join(repr(arg) for arg in args))
if kwargs:
pairs = ['%s=%r' % (k, w) for k, w in sorted(kwargs.items())]
arg_lst.append(', '.join(pairs))
arg_str = ', '.join(arg_lst)
print(FMT.format(**locals())) # any local variable of clocked
return result
return clocked @clock
def snooze(seconds):
time.sleep(seconds) @clock
def factorial(n):
return 1 if n < 2 else n*factorial(n-1) print('*' * 40, 'Calling snooze(.123)')
snooze(.123)
print('*' * 40, 'Calling factorial(6)')
print('6! =', factorial(6))
# ('****************************************', 'Calling snooze(.123)')
# [0.12694907s] snooze(0.123) -> None
# ('****************************************', 'Calling factorial(6)')
# [0.00000286s] factorial(1) -> 1
# [0.00004411s] factorial(2) -> 2
# [0.00005984s] factorial(3) -> 6
# [0.00007296s] factorial(4) -> 24
# [0.00014281s] factorial(5) -> 120
# [0.00015783s] factorial(6) -> 720
# ('6! =', 720)
5. Decorators in the Standard Library
5.1 functools.wraps
import functools
def deco(func):
@functools.wraps(func) # copy the relevant attributes from func to inner
def inner():
print('running inner()')
return inner @deco
def target():
"""i'm target"""
print('running target()') target() # running inner()
print(target.__name__) # target
print(target.__doc__) # i'm target
5.2 functools.lru_cache
- An optimization technique that works by saving the results of previous invocations of an expensive function, avoiding repeat computations on previously used arguments.
- The cache is limited by discarding the entries that have not been read for a while.
import functools
@functools.lru_cache() # Python 3
@clock
def fibonacci(n):
if n < 2:
return n
return fibonacci(n-2) + fibonacci(n-1) print(fibonacci(6))
# [0.00000095s] fibonacci(0) -> 0
# [0.00000215s] fibonacci(1) -> 1
# [0.00036097s] fibonacci(2) -> 1
# [0.00000167s] fibonacci(3) -> 2
# [0.00039101s] fibonacci(4) -> 3
# [0.00000095s] fibonacci(5) -> 5
# [0.00041699s] fibonacci(6) -> 8
# 8 # @functools.lru_cache(maxsize=128, typed=False)
# maxsize: how many call results are stored. (should be a power of 2)
# typed: True -> store results of different argument types separately (1 / 1.0)
# False -> don't store # [notes]: lru_cache uses a dict to store the results, all the arguments
# taken by the decorated function must be hashable.
5.3 functools.singledispatch
- The new functools.singledispatch decorator in Python 3.4 allows each module to contribute to the overall solution, and lets you easily provide a specialized function even for classes that you can’t edit.
- If you decorate a plain function with @singledispatch, it becomes a generic function: a group of functions to perform the same operation in different ways, depending on the type of the first argument.
from functools import singledispatch
from collections import abc
import numbers
import html @singledispatch # mark the base function handles the obj type.
def htmlize(obj):
content = html.escape(repr(obj))
return '<pre>{}</pre>'.format(content) @htmlize.register(str) # @«base_function».register(«type»).
def _(text): # name of the specialized functions is irrelevant
return '<p>{0}</p>'.format(html.escape(text)) @htmlize.register(numbers.Integral)
def _(n):
return '<pre>{0} (0x{0:x})</pre>'.format(n) @htmlize.register(tuple)
@htmlize.register(abc.MutableSequence)
def _(seq):
inner = '</li>\n<li>'.join(htmlize(item) for item in seq)
return '<ul>\n<li>' + inner + '</li>\n</ul>' print(htmlize(str)) # <pre><class 'str'></pre>
print(htmlize('<hello>')) # <p><hello></p>
print(htmlize(10)) # <pre>10 (0xa)</pre>
print(htmlize(['alpha', {3, 2, 1}]))
# <ul>
# <li><p>alpha</p></li>
# <li><pre>{1, 2, 3}</pre></li>
# </ul> # 1. Register the specialized functions to handle ABCs (abstract classes)
# instead of concrete implementations like int and list. (support more)
# 2. A notable quality of the singledispatch mechanism is that you can
# register specialized functions anywhere in the system, in any module.
6. Stacked Decorators
@d1
@d2
def f():
print('f') # f = d1(d2(f))
7. Parameterized Decorators
- Make a decorator factory that takes those arguments and returns a decorator, which is then applied to the function to be decorated.
def outter(a=1):
def deco(func):
def inner():
if a == 1:
print(1)
else:
print(a)
return inner
return deco @outter()
def target1():
pass @outter(9)
def target2():
pass target1() # 1
target2() # 9
7. Function Decorators and Closures的更多相关文章
- 《流畅的Python》Data Structures--第7章 colsure and decorator
Function Decorators and Closures 装饰器是用于增强函数的行为,理解它,就必须先理解闭包. Python3引入关键字nonlocal,如果要理解闭包,就必须了解它的所有方 ...
- 浅入浅出Typescript Decorators
临时起的兴趣,想写一篇关于ts decorator的文章,就花小半天整理了一下... 这东西,在ES2017里好像也有... 文档的话看这里. 因为临时,就没想写太多文字介绍,带少许文字说明直接开撸 ...
- JavaScript Decorators 的简单理解
Decorators,装饰器的意思, 所谓装饰就是对一个物件进行美化,让它变得更漂亮.最直观的例子就是房屋装修.你买了一套房子,但是毛坯房,你肯定不想住,那就对它装饰一下,床,桌子,电视,冰箱等一通买 ...
- TypeScript学习笔记(九):装饰器(Decorators)
装饰器简介 装饰器(Decorators)为我们在类的声明及成员上通过元编程语法添加标注提供了一种方式. 需要注意的是:装饰器是一项实验性特性,在未来的版本中可能会发生改变. 若要启用实验性的装饰器特 ...
- 《dive into python3》 笔记摘录
1.list can hold arbitrary objects and can expand dynamically as new items are added. A list is an ...
- JAVASCRIPT的一些知识点梳理
春节闲点,可以安心的梳理一下以前不是很清楚的东东.. 看的是以下几个URL: http://web.jobbole.com/82520/ http://blog.csdn.net/luoweifu/a ...
- [TypeScript] Reflection and Decorator Metadata
TypeScript allows you to emit decorator metadata which enables more powerful features through reflec ...
- python函数与方法装饰器
之前用python简单写了一下斐波那契数列的递归实现(如下),发现运行速度很慢. def fib_direct(n): assert n > 0, 'invalid n' if n < 3 ...
- 是什么让javascript变得如此奇妙
What Makes Javascript Weird...and AWESOME -> First Class Functions -> Event-Driven Evironment ...
随机推荐
- Gogs 设置Git钩子实现项目自动部署
每次修改代码需要上传到 git仓库,查看了一下 Gogs 使用文档 发现有 web钩子 这个选项,然后发现了本地可实现的 Git钩子. 注意:需要用到管理员帐号登录,进行仓库的设置. 有三种状态分别是 ...
- idea快捷键整合-无鼠标操作idea
查找所有快捷键 Ctrl + Shift + A.输入action或操作的名字. 全屏模式 使用Alt+V快捷键,弹出View视图,然后选择Enter Full Screen. 进入这个模式后,我想看 ...
- 在win10上使用premake工具和vs2017编译运行Box2D源码和Testbed
1.从github上下载Box2D源码的zip包 2.解压缩zip包 3.从premake网站下载premake5工具,解压后得到premake5.exe 4.将premake5.exe拷贝到Box2 ...
- linux ssh利用公钥免密登陆
1.安装检查ssh 如果没有ssh的话,需要安装 #yum install -y openssh-server openssh-clients 2.生成秘钥 ssh-keygen -t rsa 执行 ...
- vue项目富文本编辑器vue-quill-editor之自定义图片上传
使用富文本编辑器的第一步肯定是先安装依赖 npm i vue-quill-editor 1.如果按照官网富文本编辑器中的图片上传是将图片转为base64格式的,如果需要上传图片到自己的服务器,需要修改 ...
- Javascript 数组转无限级分类
递归 var arr = [ {"id":1,"parent_id":0,"name":"Foods"}, {" ...
- JavaSE基础(十二)--Java 对象和类
Java 对象和类 Java作为一种面向对象语言.支持以下基本概念: 多态 继承 封装 抽象 类 对象 实例 方法 重载 本节我们重点研究对象和类的概念. 对象:对象是类的一个实例(对象不是找个女朋友 ...
- AndroidStudio下载安装教程(图文教程)
场景 Android Studio 中文社区: http://www.android-studio.org/ 下载安装包,这里选择64位Windows 等待下载完成. 注: 博客: https://b ...
- java知识随笔整理-数据库的临时表
1.创建临时表的方法 方法一.select * into #临时表名 from 你的表; 方法二. create table #临时表名(字段1 约束条件,字段2 约束条件,.....)create ...
- [HihoCoder-1424] Asa's Chess Problem
有上下界的费用流 #include <stdio.h> #include <algorithm> #include <queue> #include <cst ...