最近搞了搞minist手写数据集的神经网络搭建,一个数据集里面很多个数据,不能一次喂入,所以需要分成一小块一小块喂入搭建好的网络。

pytorch中有很方便的dataloader函数来方便我们进行批处理,做了简单的例子,过程很简单,就像把大象装进冰箱里一共需要几步?


第一步:打开冰箱门。

我们要创建torch能够识别的数据集类型(pytorch中也有很多现成的数据集类型,以后再说)。

首先我们建立两个向量X和Y,一个作为输入的数据,一个作为正确的结果:

随后我们需要把X和Y组成一个完整的数据集,并转化为pytorch能识别的数据集类型:

我们来看一下这些数据的数据类型:

可以看出我们把X和Y通过Data.TensorDataset() 这个函数拼装成了一个数据集,数据集的类型是【TensorDataset】。

好了,第一步结束了,冰箱门打开了。


第二步:把大象装进去。

就是把上一步做成的数据集放入Data.DataLoader中,可以生成一个迭代器,从而我们可以方便的进行批处理。

DataLoader中也有很多其他参数:

dataset:Dataset类型,从其中加载数据
batch_size:int,可选。每个batch加载多少样本
shuffle:bool,可选。为True时表示每个epoch都对数据进行洗牌
sampler:Sampler,可选。从数据集中采样样本的方法。
num_workers:int,可选。加载数据时使用多少子进程。默认值为0,表示在主进程中加载数据。
collate_fn:callable,可选。
pin_memory:bool,可选
drop_last:bool,可选。True表示如果最后剩下不完全的batch,丢弃。False表示不丢弃。

好了,第二步结束了,大象装进去了。


第三步:把冰箱门关上。

好啦,现在我们就可以愉快的用我们上面定义好的迭代器进行训练啦。

在这里我们利用print来模拟我们的训练过程,即我们在这里对搭建好的网络进行喂入。

输出的结果是:

可以看到,我们一共训练了所有的数据训练了5次。数据中一共10组,我们设置的mini-batch是3,即每一次我们训练网络的时候喂入3组数据,到了最后一次我们只有1组数据了,比mini-batch小,我们就仅输出这一个。

此外,还可以利用python中的enumerate(),是对所有可以迭代的数据类型(含有很多东西的list等等)进行取操作的函数,用法如下:

好啦,现在冰箱门就关上啦,(*^__^*)

pytorch中如何使用DataLoader对数据集进行批处理的更多相关文章

  1. pytorch Dataset数据集和Dataloader迭代数据集

    import torch from torch.utils.data import Dataset,DataLoader class SmsDataset(Dataset): def __init__ ...

  2. pytorch中DataLoader, DataSet, Sampler之间的关系

    转自:https://mp.weixin.qq.com/s/RTv0cUWvc0kuXBeNoXVu_A 自上而下理解三者关系 首先我们看一下DataLoader.__next__的源代码长什么样,为 ...

  3. PyTorch中的MIT ADE20K数据集的语义分割

    PyTorch中的MIT ADE20K数据集的语义分割 代码地址:https://github.com/CSAILVision/semantic-segmentation-pytorch Semant ...

  4. pytorch中tensorboardX的用法

    在代码中改好存储Log的路径 命令行中输入 tensorboard --logdir /home/huihua/NewDisk1/PycharmProjects/pytorch-deeplab-xce ...

  5. 转pytorch中训练深度神经网络模型的关键知识点

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/weixin_42279044/articl ...

  6. [深度学习] pytorch利用Datasets和DataLoader读取数据

    本文简单描述如果自定义dataset,代码并未经过测试(只是说明思路),为半伪代码.所有逻辑需按自己需求另外实现: 一.分析DataLoader train_loader = DataLoader( ...

  7. 第五章——Pytorch中常用的工具

    2018年07月07日 17:30:40 __矮油不错哟 阅读数:221   1. 数据处理 数据加载 ImageFolder DataLoader加载数据 sampler:采样模块 1. 数据处理 ...

  8. pytorch加载语音类自定义数据集

    pytorch对一下常用的公开数据集有很方便的API接口,但是当我们需要使用自己的数据集训练神经网络时,就需要自定义数据集,在pytorch中,提供了一些类,方便我们定义自己的数据集合 torch.u ...

  9. PyTorch中使用深度学习(CNN和LSTM)的自动图像标题

    介绍 深度学习现在是一个非常猖獗的领域 - 有如此多的应用程序日复一日地出现.深入了解深度学习的最佳方法是亲自动手.尽可能多地参与项目,并尝试自己完成.这将帮助您更深入地掌握主题,并帮助您成为更好的深 ...

随机推荐

  1. windows编程按小时生成日志文件

    这是一个简单的日志记录方法,为了避免单个日志文件过大,所以每个小时生成一个新的日志文件 注意:g_pLogPath 可以带路径,但是必须手动创建好路径,保证目录存在.而且要详细到log文件名,不能带后 ...

  2. ceph 安装过程

    安装依赖: yum install -y yum-utils && yum-config-manager --add-repo https://dl.fedoraproject.org ...

  3. hdu5521(Meeting)spfa 层次网络最短路

    题意:给出几个集合,每个集合中有Si个点 且任意两个点的距离为ti,现在要求两个人分别从1和n出发,问最短多长时间才能遇到,且给出这些可能的相遇点; 取两个人到达某点时所用时间大的值 然后取最小的   ...

  4. day24 异常处理

    程序一旦发生错误,就从错误的位置停下不在执行后面的内容一般可能预估但是无法处理的问题可以用异常处理进行操作异常处理后会继续执行后面的代码 try: # 写在try中的语句是一定执行的 ret = in ...

  5. 11 Zabbix Item类型之Zabbix Calculated 计算型Item类型

    点击返回:自学Zabbix之路 点击返回:自学Zabbix4.0之路 点击返回:自学zabbix集锦 11 Zabbix Item类型之Zabbix Calculated 计算型Item类型 计算类型 ...

  6. 【BZOJ2434】【NOI2011】阿狸的打字机(AC自动机,树状数组)

    [BZOJ2434]阿狸的打字机(AC自动机,树状数组) 先写个暴力: 每次打印出字符串后,就插入到\(Trie\)树中 搞完后直接搭\(AC\)自动机 看一看匹配是怎么样的: 每次沿着\(AC\)自 ...

  7. 【BZOJ2285】[SDOI2011]保密(分数规划,网络流)

    [BZOJ2285][SDOI2011]保密(分数规划,网络流) 题面 BZOJ 洛谷 题解 首先先读懂题目到底在干什么. 发现要求的是一个比值的最小值,二分这个最小值\(k\),把边权转换成\(t- ...

  8. 【BZOJ1818】[CQOI2010]内部白点(树状数组,扫描线)

    [BZOJ1818][CQOI2010]内部白点(树状数组,扫描线) 题面 BZOJ 题解 不难发现\(-1\)就是在搞笑的. 那么对于每一行,我们显然可以处理出来最左和最右的点,那么等价于我们在横着 ...

  9. 最长上升子序列LIS(51nod1134)

    1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递 ...

  10. C# 数组&集合&泛型集合

    一.数组 必须规定类型,必须规定长度:  1.定义 int[ ] i = new int[5]; int[] j = new int[]{1,2,3,4,5}; 2.数组的遍历: Console.Wr ...