Battlestation Operational

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Problem Description
> The Death Star, known officially as the DS-1 Orbital Battle Station, also known as the Death Star I, the First Death Star, Project Stardust internally, and simply the Ultimate Weapon in early development stages, was a moon-sized, deep-space mobile battle station constructed by the Galactic Empire. Designed to fire a single planet-destroying superlaser powered by massive kyber crystals, it was the pet project of the Emperor, Darth Vader, and its eventual commander Grand Moff Wilhuff Tarkin to expound the military philosophy of the aptly named Tarkin Doctrine.
>
> — Wookieepedia

In the story of the Rogue One, the rebels risked their lives stolen the construction plan of the Death Star before it can cause catastrophic damage to the rebel base. According to the documents, the main weapon of the Death Star, the Superlaser, emits asymmetric energy in the battlefield that cause photons to annihilate and burns everything in a single shot.

You are assigned the task to estimate the damage of one shot of the Superlaser.

Assuming that the battlefield is an n×n grid. The energy field ignited by the Superlaser is asymmetric over the grid. For the cell at i-th row and j-th column, ⌈i/j⌉units of damage will be caused. Furthermore, due to the quantum effects, the energies in a cell cancel out if gcd(i,j)≠1 or i<j.

The figure below illustrates the damage caused to each cell for n=100. A cell in black indicates that this cell will not be damaged due to the quantum effects. Otherwise, different colors denote different units of damages.

Your should calculate the total damage to the battlefield. Formally, you should compute

f(n)=∑i=1n∑j=1i⌈ij⌉[(i,j)=1],

where [(i,j)=1] evaluates to be 1 if gcd(i,j)=1, otherwise 0.

 
Input
There are multiple test cases.

Each line of the input, there is an integer n (1≤n≤106), as described in the problem.

There are up to 104 test cases.

 
Output
For each test case, output one integer in one line denoting the total damage of the Superlaser, f(n) mod 109+7.
 
Sample Input
1
2
3
10
 
Sample Output
1
3
8
110
 
Source

 不想写题解!!!!!!!!!

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
#include<bitset>
#include<time.h>
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define pi (4*atan(1.0))
#define eps 1e-4
#define bug(x) cout<<"bug"<<x<<endl;
const int N=3e4+,M=1e6+,inf=1e9+,MOD=1e9+;
const LL INF=1e18+,mod=1e9+; int mu[M], p[M], np[M], cnt;
LL smu[M];
void init()
{
mu[]=;
for(int i=; i<M; ++i)
{
if(!np[i]) p[++cnt]=i, mu[i]=-;
for(int j=; j<=cnt && i*p[j]<M ; ++j)
{
int t=i*p[j];
np[t]=;
if(i%p[j]==)
{
mu[t]=;
break;
}
mu[t]=-mu[i];
}
}
for(int i=; i<M; i++)
smu[i]=smu[i-]+mu[i],smu[i]=(smu[i]%mod+mod)%mod;
}
LL a[M],sum[M],sum2[M];
void init1()
{
for(int j=; j<=; j++)
{
a[j]+=;
a[j+]-=;
a[j+]=(a[j+]%mod+mod)%mod;
a[j]=(a[j]%mod+mod)%mod;
for(int k=;;k++)
{
int L=(k-)*j+;
int R=k*j+;
a[L]+=k;
a[L]%=mod;
if(R>=M)break;
a[R]-=k;
a[R]=(a[R]%mod+mod)%mod;
}
}
for(int i=; i<M; i++)
sum[i]=sum[i-]+a[i],sum[i]%=mod;
for(int i=;i<M;i++)
sum2[i]=sum2[i-]+sum[i],sum2[i]%=mod;
}
int main()
{
init();
init1();
int n;
while(~scanf("%d",&n))
{
LL ans=;
int last=;
for(int i=; i<=n; i=last+)
{
last=(n/(n/i));
ans+=(((smu[last]-smu[i-]+mod)%mod)*sum2[n/i])%mod;
ans=(ans%mod+mod)%mod;
}
printf("%lld\n",ans);
}
return ;
}

Battlestation Operational

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 20    Accepted Submission(s): 3

Problem Description
> The Death Star, known officially as the DS-1 Orbital Battle Station, also known as the Death Star I, the First Death Star, Project Stardust internally, and simply the Ultimate Weapon in early development stages, was a moon-sized, deep-space mobile battle station constructed by the Galactic Empire. Designed to fire a single planet-destroying superlaser powered by massive kyber crystals, it was the pet project of the Emperor, Darth Vader, and its eventual commander Grand Moff Wilhuff Tarkin to expound the military philosophy of the aptly named Tarkin Doctrine.
>
> — Wookieepedia

In the story of the Rogue One, the rebels risked their lives stolen the construction plan of the Death Star before it can cause catastrophic damage to the rebel base. According to the documents, the main weapon of the Death Star, the Superlaser, emits asymmetric energy in the battlefield that cause photons to annihilate and burns everything in a single shot.

You are assigned the task to estimate the damage of one shot of the Superlaser.

Assuming that the battlefield is an n×n grid. The energy field ignited by the Superlaser is asymmetric over the grid. For the cell at i-th row and j-th column, ⌈i/j⌉units of damage will be caused. Furthermore, due to the quantum effects, the energies in a cell cancel out if gcd(i,j)≠1 or i<j.

The figure below illustrates the damage caused to each cell for n=100. A cell in black indicates that this cell will not be damaged due to the quantum effects. Otherwise, different colors denote different units of damages.

Your should calculate the total damage to the battlefield. Formally, you should compute

f(n)=∑i=1n∑j=1i⌈ij⌉[(i,j)=1],

where [(i,j)=1] evaluates to be 1 if gcd(i,j)=1, otherwise 0.

 
Input
There are multiple test cases.

Each line of the input, there is an integer n (1≤n≤106), as described in the problem.

There are up to 104 test cases.

 
Output
For each test case, output one integer in one line denoting the total damage of the Superlaser, f(n) mod 109+7.
 
Sample Input
1
2
3
10
 
Sample Output
1
3
8
110
 
Source

hdu 6134 Battlestation Operational 莫比乌斯反演的更多相关文章

  1. 2017多校第8场 HDU 6134 Battlestation Operational 莫比乌斯反演

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6134 题意: 解法: 那么g(n)怎么求,我们尝试打表发现g(n)是有规律的,g(n)=g(n-1)+ ...

  2. hdu 6134 Battlestation Operational (莫比乌斯反演+埃式筛)

    Problem Description   > The Death Star, known officially as the DS-1 Orbital Battle Station, also ...

  3. HDU 6134 Battlestation Operational(莫比乌斯反演)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6134 [题目大意] 求$\sum_{i=1}^{n}{\sum_{j=1}^{i}\lceil{\ ...

  4. 2017ACM暑期多校联合训练 - Team 8 1002 HDU 6134 Battlestation Operational (数论 莫比乌斯反演)

    题目链接 Problem Description The Death Star, known officially as the DS-1 Orbital Battle Station, also k ...

  5. hdu 6134: Battlestation Operational (2017 多校第八场 1002)【莫比乌斯】

    题目链接 比赛时没抓住重点,对那个受限制的“分数求和”太过关心了..其实如果先利用莫比乌斯函数的一个性质把后面那个[gcd(i,j)=1]去掉,那么问题就可以简化很多.公式如下 这和之前做过的一道题很 ...

  6. HDU 6134 Battlestation Operational | 2017 Multi-University Training Contest 8

    破结论没听说过,上式推导到第三步的时候有了O(nlogn) 的做法(枚举倍数+1最后前缀和),并且这种做法可以直接应用到向上取整的计算中,详见forever97 但由于d(n)是积性函数,故可O(n) ...

  7. hdu6134 Battlestation Operational 莫比乌斯第一种形式

    /** 题目:hdu6134 Battlestation Operational 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6134 题意:f(n) = ...

  8. HDU 5321 Beautiful Set (莫比乌斯反演 + 逆元 + 组合数学)

    题意:给定一个 n 个数的集合,然后让你求两个值, 1.是将这个集合的数进行全排列后的每个区间的gcd之和. 2.是求这个集合的所有的子集的gcd乘以子集大小的和. 析:对于先求出len,len[i] ...

  9. HDU 4746 Mophues【莫比乌斯反演】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4746 题意: 1≤x,y≤n , 求gcd(x,y)分解后质因数个数小于等k的(x,y)的对数. 分 ...

随机推荐

  1. node 按行读取文件

    var readline = require('readline'); var fs = require('fs'); var os = require('os'); var fReadName =  ...

  2. UVA - 748 Exponentiation

    Problems involving the computation of exact values of very large magnitude and precision are common. ...

  3. 安装ubuntu18.04.1

    下载ubuntu:https://www.ubuntu.com/download/desktop 在虚拟机创建好ubuntu18.04.1后无法启动(选择的是linux,ubuntu64位),提示:此 ...

  4. priority todo

    analyze the work about change to right spindle

  5. curl 抓取图片

    /** * curl 抓取图片 * @param $url * @return mixed */ public static function downLoadImage($url) { $heade ...

  6. 被fancybox坑的心路历程

    今天项目中需要使用fancybox来展示图片,但是使用中发现fancybox没起作用,点击图片直接刷新了页面! fancybox的原理是通过给a标签绑定事件,使得a标签不在是直接跳转链接,而是把链接中 ...

  7. Python爬虫(二)——豆瓣图书决策树构建

    前文参考:  https://www.cnblogs.com/LexMoon/p/douban1.html Matplotlib绘制决策树代码: # coding=utf-8 import matpl ...

  8. python简说(九)函数

    一.列表生成式 s =[1,2,3,4,5,6,7,8]for i in s: print(i+1)res = [ i+1 for i in s]res = [str(i) for i in s] 二 ...

  9. 《linux内核设计分析》 第一周作业

    linux 基础入门 课程总结 一.linux系统简介 linux操作系统 整个计算机可以分为 硬件 内核 系统调用 应用程序 操作系统就属于内核和系统调用这两部分 操作系统历史发展 批处理操作系统 ...

  10. Jmeter在Linux下执行

    1.上传jmeter文件到服务器上(最好自己建一个文件夹:如:mkidr yzb_jmeter) 2.上传jmeter脚本到yzb_jmeter,并修改权限:chmod +x 脚本文件 3.修改统计的 ...