巡回旅行商问题(Traveling Salesman Problem,TSP),也称为货郎担问题。该问题可简单描述为走遍n个城市的最短路。几十年来,出现了很多近似优化算法。如近邻法、贪心算法、最近插入法、最远插入法、模拟退火算法以及遗传算法。

问题1 设有一个售货员从10个城市中的某一个城市的出发,去其他9个城市推销产品。10个城市的距离已经给出。10个城市相互距离如下表。要求每个城市到达一次仅以此后,回到原出发城市。问:他如何选择旅行路线,使总路程最短。

model:
sets:
city/1..10/:u;
link(city,city):d,x;
endsets
data:
d=0 7 4 5 8 6 12 13 11 18
7 0 3 10 9 14 5 14 17 17
4 3 0 5 9 10 21 8 27 12
5 10 5 0 14 9 10 9 23 16
8 9 9 14 0 7 8 7 20 19
6 14 10 9 7 0 13 5 25 13
12 5 21 10 8 13 0 23 21 18
13 14 8 9 7 5 23 0 18 12
11 17 27 23 20 25 21 18 0 16
18 17 12 16 19 13 18 12 16 0;
@text()=@writefor(link(i,j)|x(i,j)#GT#0:'x(',i,',',j,')=',x(i,j));
enddata
min=@sum(link:d*x);
@for(city(j):@sum(city(i)|j#ne#i:x(i,j))=1);
@for(city(i):@sum(city(j)|j#ne#i:x(i,j))=1);
@for(link(i,j)|i#ne#j#and#i#gt#1:u(i)-u(j)+10*x(i,j)<=9);
@for(link:@BIN(x));
end

  

x(1,4)=1 x(2,7)=1 x(3,2)=1 x(4,3)=1 x(5,6)=1 x(6,8)=1 x(7,5)=1 x(8,10)=1 x(9,1)=1 x(10,9)=1

1 4 3 2 7 5 6 8 10 9 1

图论中TSP问题的LINGO求解与应用的更多相关文章

  1. 图论中最优树问题的LINGO求解

    树:连通且不含圈的无向图称为树.常用T表示.树中的边称为树枝,树中度为1的顶点称为树叶. 生成树:若T是包含图G的全部顶点的子图,它又是树,则称T是G的生成树. 最小生成树:设T=(V,E1)是赋权图 ...

  2. 数学建模 TSP(旅行商问题) Lingo求解

    model: sets: cities../:level; link(cities, cities): distance, x; !距离矩阵; endsets data: distance ; end ...

  3. Tarjan在图论中的应用(三)——用Tarjan来求解2-SAT

    前言 \(2-SAT\)的解法不止一种(例如暴搜?),但最高效的应该还是\(Tarjan\). 说来其实我早就写过用\(Tarjan\)求解\(2-SAT\)的题目了(就是这道题:[2019.8.14 ...

  4. TSP旅行商问题的Hopfield求解过程

      连续型Hopfield在matlab中没有直接的工具箱,所以我们们根据Hopfield给出的连续行算法自行编写程序.本文中,以求解旅行商 问题来建立Hopfield网络,并得到解,但是该解不一定是 ...

  5. Lingo求解线性规划案例2——多阶段投资问题

     凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 某公司现有资金30万元可用于投资,5年内有下列方案可供采纳:   1号方案:在年初投资1元,2年后可收回1. ...

  6. 用Lingo求解线性规划问题

    第一步:输入目标条件和约束条件.每行以分号隔开.然后点击工具栏上的Solve按钮,或Lingo菜单下的Solve子菜单. 第二步:检查report中的结果. 默认情况下,Lingo不进行灵敏度分析. ...

  7. 【算法】关于图论中的最小生成树(Minimum Spanning Tree)详解

    本节纲要 什么是图(network) 什么是最小生成树 (minimum spanning tree) 最小生成树的算法 什么是图(network)? 这里的图当然不是我们日常说的图片或者地图.通常情 ...

  8. Prim算法和Kruskal算法(图论中的最小生成树算法)

    最小生成树在一个图中可以有多个,但是如果一个图中边的权值互不相同的话,那么最小生成树只可能存在一个,用反证法很容易就证明出来了. 当然最小生成树也是一个图中包含所有节点的权值和最低的子图. 在一个图中 ...

  9. 图论中DFS与BFS的区别、用法、详解…

    DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...

随机推荐

  1. 爬虫(十七):Scrapy框架(四) 对接selenium爬取京东商品数据

    1. Scrapy对接Selenium Scrapy抓取页面的方式和requests库类似,都是直接模拟HTTP请求,而Scrapy也不能抓取JavaScript动态谊染的页面.在前面的博客中抓取Ja ...

  2. 吴裕雄--天生自然JAVA SPRING框架开发学习笔记:Spring使用AspectJ开发AOP基于XML和基于Annotation

    AspectJ 是一个基于 Java 语言的 AOP 框架,它扩展了 Java 语言.Spring 2.0 以后,新增了对 AspectJ 方式的支持,新版本的 Spring 框架,建议使用 Aspe ...

  3. mysql 事务使用教程

    一.什么是事务 事务Transaction,是指作为一个基本工作单元执行的一系列SQL语句的操作,要么完全地执行,要么完全地都不执行.   二.事务的特性       原子性         事务是一 ...

  4. archlinux下安装mysql

    mysql的安装 这里安装的是mariadb一个mysql的开源版本,实际使用体验没有差别 1. 安装Maria DB sudo pacman -S mariadb 2. 配置目录 sudo mari ...

  5. Linux每日练习-crontab

  6. POJ 1045:Bode Plot

    Bode Plot Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13392   Accepted: 8462 Descri ...

  7. 17. react redux的中间件

    1. redux 数据流程图 View 会派发一个 Action Action 通过 Dispatch 方法派发给 Store Store 接收到 Action 连同之前的 State 发给  Red ...

  8. cf 478D.Santa Claus and a Palindrome

    原来set,priority_queue也可以映射..涨姿势2333 比较麻烦的应该就是判断自身回文的串是选2个还是选一个吧. #include<bits/stdc++.h> #defin ...

  9. SpringBoot 系列教程之事务不生效的几种 case

    SpringBoot 系列教程之事务不生效的几种 case 前面几篇博文介绍了声明式事务@Transactional的使用姿势,只知道正确的使用姿势可能还不够,还得知道什么场景下不生效,避免采坑.本文 ...

  10. 实验吧web-中-忘记密码了

    打开网页,查看源代码,好像发现了管理员邮箱而且还是用vim编辑的. 我们提交一下这个邮箱,虽然提交成功了,但好像并没什么用. 我们随便提交一个,会弹出 看来好像还有个step2呢,我们查看源代码(在这 ...