参考

Numpy 中的傅里叶变换

首先我们看看如何使用 Numpy 进行傅里叶变换。Numpy 中的 FFT 包可以帮助我们实现快速傅里叶变换。函数 np.fft.fft2() 可以对信号进行频率转换,输出结果是一个复杂的数组。本函数的第一个参数是输入图像,要求是灰度格式。第二个参数是可选的, 决定输出数组的大小。输出数组的大小和输入图像大小一样。如果输出结果比输入图像大,输入图像就需要在进行 FFT 前补0。如果输出结果比输入图像小的话,输入图像就会被切割。

频率为0 的部分(直流分量)在输出图像的左上角。(2D傅里叶变换F(x,y)的F(0,0)位置在图像的左上角,F(0,0)表示的是图像灰度的均值)如果想让它(直流分量)在输出图像的中心,我们还需要将结果沿两个方向平移 N/2 。函数 np.fft.fftshift() 可以帮助我们实现这一步。

# coding=utf-8
import cv2
import numpy as np
from matplotlib import pyplot as plt img = cv2.imread("/home/wl/3.jpg", 0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
# 这里构建振幅图的公式没学过
magnitude_spectrum = 20*np.log(np.abs(fshift))#先取绝对值,表示取模。取对数,将数据范围变小
print magnitude_spectrum
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum , cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

我们可以看到输出结果的中心部分更白(亮),这说明低频分量更多。现在我们可以进行频域变换了,我们就可以在频域对图像进行一些操作了,例如高通滤波和重建图像(DFT 的逆变换)。比如我们可以使用一个60x60 的矩形窗口对图像进行掩模操作从而去除低频分量。然后再使用函数np.fft.ifftshift() 进行逆平移操作,所以现在直流分量又回到左上角了,左后使用函数 np.ifft2() 进行 FFT 逆变换。同样又得到一堆复杂的数字,我们可以对他们取绝对值:

# coding=utf-8
import cv2
import numpy as np
from matplotlib import pyplot as plt img = cv2.imread("/home/wl/3.jpg", 0)
f = np.fft.fft2(img)#得到结果为复数矩阵
fshift = np.fft.fftshift(f)#直接取中心
rows, cols = img.shape
crow,ccol = rows/2 , cols/2
fshift[crow-30:crow+30, ccol-30:ccol+30] = 0#蒙板大小60×60
f_ishift = np.fft.ifftshift(fshift)
img_back = np.fft.ifft2(f_ishift)#使用FFT逆变换,此时结果仍然是复数
img_back = np.abs(img_back)# 取绝对值
plt.subplot(131),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(132),plt.imshow(img_back, cmap = 'gray')
plt.title('Image after HPF'), plt.xticks([]), plt.yticks([])
plt.subplot(133),plt.imshow(img_back)
plt.title('Result in JET'), plt.xticks([]), plt.yticks([])
plt.show()

上图的结果显示高通滤波其实是一种边界检测操作。这就是我们在前面图像梯度那一章看到的。同时我们还发现图像中的大部分数据集中在频谱图的低频区域。

OpenCV 中的傅里叶变换

OpenCV 中相应的函数是 cv2.dft() 和 cv2.idft()。和前面输出的结果一样,但是是双通道的。第一个通道是结果的实数部分,第二个通道是结果的虚数部分。输入图像要首先转换成 np.float32 格式。

# coding=utf-8
import cv2
import numpy as np
from matplotlib import pyplot as plt img = cv2.imread("/home/wl/3.jpg", 0)
dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))#频谱图
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

使用函数 cv2.cartToPolar()会同时得到幅度和相位,此函数也是直角坐标转换为极坐标的函数。

现在我们来做逆 DFT。在前面的部分我们实现了一个 HPF(高通滤波),现在我们来做 LPF(低通滤波)将高频部分去除。其实就是对图像进行模糊操作。首先我们需要构建一个掩模,与低频区域对应的地方设置为 1, 与高频区域对应的地方设置为 0。

# coding=utf-8
import cv2
import numpy as np
from matplotlib import pyplot as plt img = cv2.imread("/home/wl/3.jpg", 0)
dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
rows, cols = img.shape
crow,ccol = rows/2 , cols/2
# create a mask first, center square is 1, remaining all zeros
mask = np.zeros((rows,cols,2),np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1
# apply mask and inverse DFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

注意:OpenCV 中的函数 cv2.dft() 和 cv2.idft() 要比 Numpy 快。但是Numpy 函数更加用户友好。

DFT 的性能优化

当数组的大小为某些值时 DFT 的性能会更好。当数组的大小是 2 的指数时 DFT 效率最高。当数组的大小是 2,3,5 的倍数时效率也会很高。所以如果你想提高代码的运行效率时,你可以修改输入图像的大小(补 0)。对于OpenCV 你必须自己手动补 0。但是 Numpy,你只需要指定 FFT 运算的大小,它会自动补 0。那我们怎样确定最佳大小呢?OpenCV 提供了一个函数:cv2.getOptimalDFTSize()。它可以同时被 cv2.dft() 和 np.fft.fft2() 使用。

# coding=utf-8
import cv2
import numpy as np img = cv2.imread("/home/wl/3.jpg", 0)
dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
rows, cols = img.shape
print rows,cols
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
print nrows,ncols
1420 946
1440 960

Opencv笔记(二十一)——傅里叶变换的更多相关文章

  1. python3.4学习笔记(二十一) python实现指定字符串补全空格、前面填充0的方法

    python3.4学习笔记(二十一) python实现指定字符串补全空格.前面填充0的方法 Python zfill()方法返回指定长度的字符串,原字符串右对齐,前面填充0.zfill()方法语法:s ...

  2. (C/C++学习笔记) 二十一. 异常处理

    二十一. 异常处理 ● 异常的概念 程序的错误通常包括:语法错误.逻辑错误.运行异常. 语法错误指书写的程序语句不合乎编译器的语法规则,这种错误在编译.连接时由编译器指出. 逻辑错误是指程序能顺利运行 ...

  3. Opencv笔记(十一)——图像模糊(平滑)

    学习目标: 使用自定义的滤波器对图像进行卷积(2D 卷积) 学习使用不同的低通滤波器对图像进行模糊 一.2D卷积 卷积不是很了解的可以看我上一篇博客,与语音信号一样,我们也可以对 2D 图像实施低通滤 ...

  4. Java基础学习笔记二十一 多线程

    多线程介绍 学习多线程之前,我们先要了解几个关于多线程有关的概念.进程:进程指正在运行的程序.确切的来说,当一个程序进入内存运行,即变成一个进程,进程是处于运行过程中的程序,并且具有一定独立功能. 线 ...

  5. 过滤器(web基础学习笔记二十一)

    一.过滤器简介 二.在Eclipse中创建过滤器 三.使用过滤器设置全部web字符编码 public void doFilter(ServletRequest request, ServletResp ...

  6. Java学习笔记二十一:Java面向对象的三大特性之继承

    Java面向对象的三大特性之继承 一:继承的概念: 继承是java面向对象编程技术的一块基石,因为它允许创建分等级层次的类. 继承就是子类继承父类的特征和行为,使得子类对象(实例)具有父类的实例域和方 ...

  7. python3笔记二十一:时间操作datetime和calendar

    一:学习内容 datetime calendar 二:datetime 1.模块说明:可以理解为datetime基于time进行了封装,提供了各种使用的函数,datetime模块的接口更直接,更容易调 ...

  8. Java笔记(二十一)……String与StringBuffer

    String类 String类是一个特殊的类,叫做只读类,一旦创建了对象,便不可被改变,同样"abc"既为一个常量,也为一个对象,也是不可以改变的 String s1 = &quo ...

  9. PHP学习笔记二十一【全局变量】

    <?PHP //定义全局变量 global $a; $a=9; //给全局变量赋值 function test1() { global $a; $a=45; } test1(); echo $a ...

  10. 论文阅读笔记二十一:MULTI-SCALE CONTEXT AGGREGATION BY DILATED CONVOLUTIONS(ICRL2016)

    论文源址:https://arxiv.org/abs/1511.07122 tensorflow Github:https://github.com/ndrplz/dilation-tensorflo ...

随机推荐

  1. EL&JSTL简单介绍

    EL表达式 是为了简化咱们的jsp代码,具体一点就是为了简化在jsp里面写的那些java代码. 写法格式 ${表达式 } 如果从作用域中取值,会先从小的作用域开始取,如果没有,就往下一个作用域取. 一 ...

  2. 69.ORM查询条件:isnull和regex的使用

    首先查看数据库中的article表的数据: 定义模型的文件models.py中的示例代码如下: from django.db import models class Category(models.M ...

  3. Mac OS/Windows好用软件分享

    下软件全部为破解版,仅供参考学习用,如涉及商业. 请支持正版!谢谢 全部为本人亲测过 看上哪个留言发给你!   直接全分享上来会有人居心不良!

  4. LaunchPad(思维)

    链接:https://ac.nowcoder.com/acm/contest/3665/D来源:牛客网 题目描述 Hery is a boy with strong practical abiliti ...

  5. SpringSecurity过滤器顺序

    https://blog.csdn.net/qq_35720307/article/details/97656608 org.springframework.security.config.annot ...

  6. Gym102361E Escape

    Link 首先我们可以推出一些有用的结论: 1.任意两个机器人之间的路线不能重合,但是可以垂直交叉. 2.如果一个格子没有转向器,那么最多允许两个机器人以相互垂直的方向通过. 3.如果一个格子有转向器 ...

  7. PAT Advanced 1081 Rational Sum (20) [数学问题-分数的四则运算]

    题目 Given N rational numbers in the form "numerator/denominator", you are supposed to calcu ...

  8. nginx中server块的匹配顺序

    客户端发出一个http请求时,nginx收到后会取出header头中的host,与nginx.conf中每个server的server_name进行匹配,以此决定到底由哪一个server块来处理这个请 ...

  9. 关于SpringMVC的使用总结

    简介 springMVC即Spring Web MVC,是spring web模块的一部分,是spring自己的web框架 springMVC对Servlet API 进行了完善的封装,极大的简化了开 ...

  10. 使用GitHub管理Repository

    对已有的Repository进行修改 将已有的项目克隆到本地 git clone https://github.com/username/project-name 或者同步已经下载的项目 git pu ...