数学--数论--HDU1825(积性函数性质+和函数公式+快速模幂+非互质求逆元)
As we all know, the next Olympic Games will be held in Beijing in 2008. So the year 2008 seems a little special somehow. You are looking forward to it, too, aren’t you? Unfortunately there still are months to go. Take it easy. Luckily you meet me. I have a problem for you to solve. Enjoy your time.
Now given a positive integer N, get the sum S of all positive integer divisors of 2008 N. Oh no, the result may be much larger than you can think. But it is OK to determine the rest of the division of S by K. The result is kept as M.
Pay attention! M is not the answer we want. If you can get 2008 M, that will be wonderful. If it is larger than K, leave it modulo K to the output. See the example for N = 1,K = 10000: The positive integer divisors of 20081 are 1、2、4、8、251、502、1004、2008,S = 3780, M = 3780, 2008 M % K = 5776.
Input
The input consists of several test cases. Each test case contains a line with two integers N and K (1 ≤ N ≤ 10000000, 500 ≤ K ≤ 10000). N = K = 0 ends the input file and should not be processed.
Output
For each test case, in a separate line, please output the result.
Sample Input
1 10000
0 0
Sample Output
5776
这个题跟HDU452一样,但是就是因为250跟其他数字不互质,所以没法求逆元,然后get到了一个公式。很nice。
就是这个 x/d%m = x%(d*m)/d
import java.util.Scanner;
public class Main {
static long q_pow(long a,long b,long mod){
long ans = 1;
while(b!=0){
if(b%2==1)
ans = ans * a % mod;
b >>= 1;
a = a * a % mod;
}
return ans;
}
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int N,K;
while (in.hasNext()) {
N=in.nextInt();
K=in.nextInt();
if(N==0&&K==0) break;
long m=(q_pow(2,3*N+1,250*K)-1)*(q_pow(251,N+1,250*K)-1)%(250*K)/250;
System.out.println(q_pow(2008,m,K));
}
}
}
数学--数论--HDU1825(积性函数性质+和函数公式+快速模幂+非互质求逆元)的更多相关文章
- 数学--数论--Hdu 1452 Happy 2004(积性函数性质+和函数公式+快速模幂+乘法逆元)
Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...
- 【HDU 5382】 GCD?LCM! (数论、积性函数)
GCD?LCM! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total ...
- 欧拉函数(小于或等于n的数中与n互质的数的数目)&& 欧拉函数线性筛法
[欧拉函数] 在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler’s totient function.φ函数.欧拉商数等. 例如φ( ...
- poj2480(利用欧拉函数的积性求解)
题目链接: http://poj.org/problem?id=2480 题意:∑gcd(i, N) 1<=i <=N,就这个公式,给你一个n,让你求sum=gcd(1,n)+gcd(2, ...
- 【模板】埃拉托色尼筛法 && 欧拉筛法 && 积性函数
埃拉托色尼筛法 朴素算法 1 vis[1]=1; 2 for (int i=2;i<=n;i++) 3 if (!vis[i]) 4 { 5 pri[++tot]=i; 6 for (int j ...
- Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...
- Master of Phi (欧拉函数 + 积性函数的性质 + 狄利克雷卷积)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265 题目大意:首先T是测试组数,n代表当前这个数的因子的种类,然后接下来的p和q,代表当前这个数的因 ...
- poj 2480 Longge's problem 积性函数性质+欧拉函数
题意: 求f(n)=∑gcd(i, N) 1<=i <=N. 分析: f(n)是积性的数论上有证明(f(n)=sigma{1<=i<=N} gcd(i,N) = sigma{d ...
- 【BZOJ 2749】 2749: [HAOI2012]外星人 (数论-线性筛?类积性函数)
2749: [HAOI2012]外星人 Description Input Output 输出test行,每行一个整数,表示答案. Sample Input 1 2 2 2 3 1 Sample Ou ...
随机推荐
- 多平台博客发布工具OpenWrite的使用
1 介绍 OpenWrite官网 OpenWrite是一款便捷的多平台博客发布工具,可以在OpenWrite编写markdown文档,然后发布到其他博客平台,目前已经支持CSDN.SegmentFau ...
- Java研发技术学习路线
Java研发技术成长路线 作为一名Java研发者,深感Java技术的学习是一个漫长过程,从一名Java菜鸟开始,加之持之以恒的耐心和脚踏实地的精神,不间断理论的学习,不停止技术实践,终成为一名技术佼佼 ...
- Struts2-学习笔记系列(5)-配置action
配置包命名空间 实现了action就需要在struts中配置action.首先配置包属性: 需要注意的是:在框架进行包匹配的时候,按文档的从上到下的顺序进行匹配 <!--下面配置名为book ...
- Go语言 中文分词技术使用技巧(一)
分词技术就是搜索引擎针对用户提交查询的关键词串进行的查询处理后根据用户的关键词串用各种匹配方法进行分词的一种技术. 中文分词(Chinese Word Segmentation)指的是将一个汉字序列( ...
- JVM日常排查问题。基本操作和命令
1.jstat jstat -gcutil pid 5s //pid进程号 每隔5s监控一次内存回收情况 E 代表 Eden 区使用率:O(Old)代表老年代使用率 :P(Permanen ...
- php.ini配置文件详解(基于5.2.17版本)
[PHP] ;;;;;;;;;;;;;;;;;;;; About php.ini ;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;; 关于php.ini文件 ;;;;; ...
- 智能指针 unique_ptr
unique_ptr 不共享它的指针.它无法复制到其他 unique_ptr,无法通过值传递到函数,也无法用于需要副本的任何标准模板库 (STL) 算法. 1.不能进行复制构造和赋值操作(unique ...
- Arthas-Java的线上问题定位工具
Arthas(阿尔萨斯) 能为你做什么? Arthas 是Alibaba开源的Java诊断工具,深受开发者喜爱. 当你遇到以下类似问题而束手无策时,Arthas可以帮助你解决: 这个类从哪个 jar ...
- Salesforce元数据入门指南,管理员必看!
元数据是Salesforce基础架构的核心,是Salesforce中的核心组件或功能.没有元数据,大部分功能都无法实现. 但是,某些Salesforce管理员仍然很难掌握元数据的整个范围,并且无法充分 ...
- Spring Data REST不完全指南(二)
上一篇文章介绍了Spring Data REST的功能及特征,以及演示了如何在项目中引入Spring Data REST并简单地启动演示了Spring Data REST项目.在本文中,我们将深入了解 ...