As we all know, the next Olympic Games will be held in Beijing in 2008. So the year 2008 seems a little special somehow. You are looking forward to it, too, aren’t you? Unfortunately there still are months to go. Take it easy. Luckily you meet me. I have a problem for you to solve. Enjoy your time.

Now given a positive integer N, get the sum S of all positive integer divisors of 2008 N. Oh no, the result may be much larger than you can think. But it is OK to determine the rest of the division of S by K. The result is kept as M.

Pay attention! M is not the answer we want. If you can get 2008 M, that will be wonderful. If it is larger than K, leave it modulo K to the output. See the example for N = 1,K = 10000: The positive integer divisors of 20081 are 1、2、4、8、251、502、1004、2008,S = 3780, M = 3780, 2008 M % K = 5776.

Input

The input consists of several test cases. Each test case contains a line with two integers N and K (1 ≤ N ≤ 10000000, 500 ≤ K ≤ 10000). N = K = 0 ends the input file and should not be processed.

Output

For each test case, in a separate line, please output the result.

Sample Input

1 10000

0 0

Sample Output

5776

这个题跟HDU452一样,但是就是因为250跟其他数字不互质,所以没法求逆元,然后get到了一个公式。很nice。

就是这个 x/d%m = x%(d*m)/d

import java.util.Scanner;

public class Main {
static long q_pow(long a,long b,long mod){
long ans = 1;
while(b!=0){
if(b%2==1)
ans = ans * a % mod;
b >>= 1;
a = a * a % mod;
}
return ans;
}
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int N,K;
while (in.hasNext()) { N=in.nextInt();
K=in.nextInt();
if(N==0&&K==0) break;
long m=(q_pow(2,3*N+1,250*K)-1)*(q_pow(251,N+1,250*K)-1)%(250*K)/250;
System.out.println(q_pow(2008,m,K));
} } }

数学--数论--HDU1825(积性函数性质+和函数公式+快速模幂+非互质求逆元)的更多相关文章

  1. 数学--数论--Hdu 1452 Happy 2004(积性函数性质+和函数公式+快速模幂+乘法逆元)

    Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...

  2. 【HDU 5382】 GCD?LCM! (数论、积性函数)

    GCD?LCM! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  3. 欧拉函数(小于或等于n的数中与n互质的数的数目)&& 欧拉函数线性筛法

    [欧拉函数] 在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler’s totient function.φ函数.欧拉商数等. 例如φ( ...

  4. poj2480(利用欧拉函数的积性求解)

    题目链接: http://poj.org/problem?id=2480 题意:∑gcd(i, N) 1<=i <=N,就这个公式,给你一个n,让你求sum=gcd(1,n)+gcd(2, ...

  5. 【模板】埃拉托色尼筛法 && 欧拉筛法 && 积性函数

    埃拉托色尼筛法 朴素算法 1 vis[1]=1; 2 for (int i=2;i<=n;i++) 3 if (!vis[i]) 4 { 5 pri[++tot]=i; 6 for (int j ...

  6. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

  7. Master of Phi (欧拉函数 + 积性函数的性质 + 狄利克雷卷积)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265 题目大意:首先T是测试组数,n代表当前这个数的因子的种类,然后接下来的p和q,代表当前这个数的因 ...

  8. poj 2480 Longge&#39;s problem 积性函数性质+欧拉函数

    题意: 求f(n)=∑gcd(i, N) 1<=i <=N. 分析: f(n)是积性的数论上有证明(f(n)=sigma{1<=i<=N} gcd(i,N) = sigma{d ...

  9. 【BZOJ 2749】 2749: [HAOI2012]外星人 (数论-线性筛?类积性函数)

    2749: [HAOI2012]外星人 Description Input Output 输出test行,每行一个整数,表示答案. Sample Input 1 2 2 2 3 1 Sample Ou ...

随机推荐

  1. 关于TD信息树自己的体验和建议

    自己选择的是17级学长13组的TD消息树,通过对这个软件的使用,感觉整体上还是很好的,他的主要功能就相当于把微信的朋友圈还有qq的好友动态等功能集合到了一起.这个软件整体就相当于一个空间,可以加好友互 ...

  2. SpringBoot系列(五)Mybatis整合完整详细版

    SpringBoot系列(五)Mybatis整合 目录 mybatis简介 项目创建 entity dao service serviceImpl mapper controller 1. Mybat ...

  3. Jquery 搜索等待用户输入完成时自动执行

    $('#fuzzySearchBox').on('keyup', function (event) { var searchStr = $(this).val().toLowerCase(); //i ...

  4. Python操作rabbitmq系列(三):多个接收端消费消息

    接着上一章.这一章,我们要将同一个消息发给多个客户端.这就是发布订阅模式.直接看代码: 发送端: import pikaimport sys connection = pika.BlockingCon ...

  5. CH5501 环路运输(单调栈)

    传送门 思路: 遇到一个环,用正常人类的思想就先把环从中间截断然后将其补成2*n长度的链.环上的最小距离换到链上就是i以n/2为半径范围内的点(画图肉眼可见).由于两个点是等价的,所以我们考虑有序对( ...

  6. C# 发布时出现:在与 SQL Server 建立连接时出现与网络相关的或特定于实例的错误

    在与 SQL Server 建立连接时出现与网络相关的或特定于实例的错误.未找到或无法访问服务器.请验证实例名称是否正确并且 SQL Server 已配置为允许远程连接. (provider: SQL ...

  7. 【Selenium03篇】python+selenium实现Web自动化:元素三类等待,多窗口切换,警告框处理,下拉框选择

    一.前言 最近问我自动化的人确实有点多,个人突发奇想:想从0开始讲解python+selenium实现Web自动化测试,请关注博客持续更新! 这是python+selenium实现Web自动化第三篇博 ...

  8. 数据表记录包含表索引和数值(int范围的整数),请对表索引相同的记录进行合并,即将相同索引的数值进行求和运算,输出按照key值升序进行输出

    此题如果直接使用有序的TreeMap就不需要这样折腾: 1.map的key值唯一性,故就不在需要set集合来去重 2.使用map后利用key的唯一性,把序列号相同的数据直接加在一起,代码会很简洁 pa ...

  9. 传智博客2015年最新版iOS基础视频_最适合初学者入门

    视频介绍: 本视频是iOS学院精心录制的免费精华版iOS语言基础视频,该视频特点在于最大程度保证了知识点的完整性,按知识点进行视频录制,每个视频控制在20分钟左右,不会使学生产生疲劳,授课讲究通俗易懂 ...

  10. AJ学IOS(52)多线程网络之GCD下单例设计模式

    AJ分享,必须精品 单例模式 1:单例模式的作用 可以保证在程序运行过程,一个类只有一个实例,而且该实例易于供外界访问 从而方便地控制了实例个数,并节约系统资源 单例模式的使用场合 在整个应用程序中, ...