Perfect Election

Time Limit: 5000MS         Memory Limit: 65536K

Total Submissions: 964         Accepted: 431

Description

In a country (my memory fails to say which), the candidates {1, 2 ..., N} are running in the parliamentary election. An opinion poll asks the question "For any two candidates of your own choice, which election result would make you happy?". The accepted answers are shown in the table below, where the candidates i and j are not necessarily different, i.e. it may happen that i=j. There are M poll answers, some of which may be similar or identical. The problem is to decide whether there can be an election outcome (It may happen that all candidates fail to be elected, or all are elected, or only a part of them are elected. All these are acceptable election outcomes.) that conforms to all M answers. We say that such an election outcome is perfect. The result of the problem is 1 if a perfect election outcome does exist and 0 otherwise.

Input

Each data set corresponds to an instance of the problem and starts with two integral numbers: 1≤N≤1000 and 1≤M≤1000000. The data set continues with M pairs ±i ±j of signed numbers, 1≤i,j≤N. Each pair encodes a poll answer as follows:

Accepted answers to the poll question    Encoding

I would be happy if at least one from i and j is elected.    +i +j

I would be happy if at least one from i and j is not elected.    -i -j

I would be happy if i is elected or j is not elected or both events happen.    +i -j

I would be happy if i is not elected or j is elected or both events happen.    -i +j

The input data are separated by white spaces, terminate with an end of file, and are correct.

Output

For each data set the program prints the result of the encoded election problem. The result, 1 or 0, is printed on the standard output from the beginning of a line. There must be no empty lines on output.

Sample Input

3 3  +1 +2  -1 +2  -1 -3 

2 3  -1 +2  -1 -2  +1 -2 

2 4  -1 +2  -1 -2  +1 -2  +1 +2 

2 8  +1 +2  +2 +1  +1 -2  +1 -2  -2 +1  -1 +1  -2 -2  +1 -1

Sample Output

1

1

0

1

Hint

For the first data set the result of the problem is 1; there are several perfect election outcomes, e.g. 1 is not elected, 2 is elected, 3 is not elected. The result for the second data set is justified by the perfect election outcome: 1 is not elected, 2 is not elected. The result for the third data set is 0. According to the answers -1 +2 and -1 -2 the candidate 1 must not be elected, whereas the answers +1 -2 and +1 +2 say that candidate 1 must be elected. There is no perfect election outcome. For the fourth data set notice that there are similar or identical poll answers and that some answers mention a single candidate. The result is 1.

题意:有N个候选人,给出M个限制条件。这些条件可以分成4类

1,+i +j 表示 i 和 j 至少选一个;

2,-i  -j 表示 i 和 j 最多选一个;

3,+i -j 表示 选i 和 不选j 最少成立一个 ;

4,-i +j 表示 不选i 和 选j 最少成立一个;

问你有没有一种方案满足M个条件。

建图: 我用Ai表示i 被选上,!Ai表示i没有被选上。

对于1则有  非Ai -> Aj 和 非Aj -> Ai

对于2则有  Ai -> 非Aj 和 Aj -> 非Ai

对于3则有  Aj -> Ai 和 非Ai -> 非Aj

对于4则有  非Aj -> 非Ai 和 Ai -> Aj

记住三个符号六种基本建图方式,剩下的都可以修改:比如上面的4代表Ai and 非Aj=1,我们就是非Aj建图加上个Ai and Aj建图,自己画个图想想是不是?地址

AC代码:

#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <vector>
#include <algorithm>
#define MAXN 2000+10
#define INF 1000000
#define eps 1e-5
using namespace std;
vector<int> G[MAXN];
int low[MAXN], dfn[MAXN];
int dfs_clock;
int sccno[MAXN], scc_cnt;
stack<int> S;
bool Instack[MAXN];
int N, M;
void init()
{
    for(int i = 1; i <= 2*N; i++) G[i].clear();
}
void getMap()
{
    int i, j;
    char op1, op2;
    while(M--)
    { 
        scanf("  %c%d %c%d", &op1, &i, &op2, &j);
        if(op1 == '+' && op2 == '+')
        {
            G[i + N].push_back(j);
            G[j + N].push_back(i);
        } 
        else if(op1 == '-' && op2 == '-')
        {
            G[i].push_back(j + N);
            G[j].push_back(i + N);
        }
        else if(op1 == '+' && op2 == '-')
        {
            G[i + N].push_back(j + N);//i若没有被选上 j一定没有被选上 
            G[j].push_back(i);//j被选上 i一定被选上 
        }
        else
        {
            G[i].push_back(j);//i被选上 j一定被选上 
            G[j + N].push_back(i + N);//j没有被选上 i一定没有被选上
        }
    }
}
void tarjan(int u, int fa)
{
    int v;
    low[u] = dfn[u] = ++dfs_clock;
    S.push(u);
    Instack[u] = true;
    for(int i = 0; i < G[u].size(); i++)
    {
        v = G[u][i];
        if(!dfn[v])
        {
            tarjan(v, u);
            low[u] = min(low[u], low[v]);
        }
        else if(Instack[v])
        low[u] = min(low[u], dfn[v]);
    }
    if(low[u] == dfn[u])
    {
        scc_cnt++;
        for(;;)
        {
            v = S.top(); S.pop();
            sccno[v] = scc_cnt;
            Instack[v] = false;
            if(v == u) break;
        }
    }
}
void find_cut(int l, int r)
{
    memset(low, 0, sizeof(low));
    memset(dfn, 0, sizeof(dfn));
    memset(sccno, 0, sizeof(sccno));
    memset(Instack, false, sizeof(Instack));
    dfs_clock = scc_cnt = 0;
    for(int i = l; i <= r; i++)
    if(!dfn[i]) tarjan(i, -1);
}
void solve()
{
    for(int i = 1; i <= N; i++)
    {
        if(sccno[i] == sccno[i+N])
        {
            printf("0\n");
            return ;
        }
    }
    printf("1\n");
}
int main()
{
    while(scanf("%d%d", &N, &M) != EOF)
    {
        init();
        getMap();
        find_cut(1, 2*N);
        solve();
    }
    return 0;
}

图论--2-SAT--POJ 3905 Perfect Election的更多相关文章

  1. POJ 3905 Perfect Election(2-sat)

    POJ 3905 Perfect Election id=3905" target="_blank" style="">题目链接 思路:非常裸的 ...

  2. POJ 3905 Perfect Election (2-Sat)

    Perfect Election Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 438   Accepted: 223 De ...

  3. POJ 3905 Perfect Election

    2-SAT 裸题,搞之 #include<cstdio> #include<cstring> #include<cmath> #include<stack&g ...

  4. POJ 3905 Perfect Election (2-SAT 判断可行)

    题意:有N个人参加选举,有M个条件,每个条件给出:i和j竞选与否会只要满足二者中的一项即可.问有没有方案使M个条件都满足. 分析:读懂题目即可发现是2-SAT的问题.因为只要每个条件中满足2个中的一个 ...

  5. POJ 3398 Perfect Service(树型动态规划,最小支配集)

    POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...

  6. OpenJudge 2810(1543) 完美立方 / Poj 1543 Perfect Cubes

    1.链接地址: http://bailian.openjudge.cn/practice/2810/ http://bailian.openjudge.cn/practice/1543/ http:/ ...

  7. POJ 3398 Perfect Service --最小支配集

    题目链接:http://poj.org/problem?id=3398 这题可以用两种上述讲的两种算法解:http://www.cnblogs.com/whatbeg/p/3776612.html 第 ...

  8. poj 1543 Perfect Cubes(注意剪枝)

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14901   Accepted: 7804 De ...

  9. POJ 1730 Perfect Pth Powers(暴力枚举)

    题目链接: https://cn.vjudge.net/problem/POJ-1730 题目描述: We say that x is a perfect square if, for some in ...

随机推荐

  1. docker 私有仓库 删除镜像

    1.查找官方删除法 https://github.com/burnettk/delete-docker-registry-image 2.民用删除法 https://segmentfault.com/ ...

  2. javascript入门 之 ztree(二 标准json数据)

    1.代码 <!DOCTYPE html> <HTML> <HEAD> <TITLE> ZTREE DEMO - Standard Data </T ...

  3. 五个简单的shell脚本

    1.编写shell脚本 ex1.sh,提示用户输入用户名,并判断此用户名是否存在. (提示:利用read.grep和/etc/passwd) #!/bin/bash echo "请输入用户名 ...

  4. Linux C++ 网络编程学习系列(7)——mbedtls编译使用

    mbedtls编译使用 环境: Ubuntu18.04 编译器:gcc或clang 编译选项: 静态编译使用 1. mbedtls源码 下载地址: https://github.com/ARMmbed ...

  5. python 字节码死磕

    前言:  如果你跟我一样,对python的字节码感兴趣,想了解python的代码在内存中到底是怎么去运行的,那么你可以继续往下看,如果你是python新手,我建议你移步它处,本文适合有点基础的pyth ...

  6. Java序列化机制中的类版本问题 serialVersionUID的静态字段 含义

    Java序列化机制中的类版本问题 分类: [Java 基础]2014-10-31 21:13 480人阅读 评论(0) 收藏 举报   目录(?)[+]       原文地址:http://yanwu ...

  7. list[列表]的使用

    #!/usr/bin/env python3# -*- coding:utf-8 -*-# name:zzyushop_list = [["手机",5000], ["电脑 ...

  8. IDEA默认KeyMap映射快捷键

    编辑 快捷键 描述 Ctrl + 空格 基础代码补全(任意类.方法.变量的名字) Ctrl + Shift + 空格 智能代码补全(过滤期望类型的方法和变量列表) Ctrl + Shift + 回车 ...

  9. A. Number Theory Problem

    题目大意:计算小于2^n,且满足2^k-1并且是7的倍数的个数 思路:优先打表,数据不大,1e5,然后求个前n项和 #include<bits/stdc++.h> using namesp ...

  10. AI vs PS 矢量 VS 位图

    矢量图 AI最大可以放大64000%.不会失真,依然很清晰.原理是不同的点以及点与点之间的路径构成的,不论放大的多大,点在路径在,就可以精确的计算出它的区域.AI中无法直接编辑位图. 位图 代表PS, ...