图论--2-SAT--POJ 3905 Perfect Election
Perfect Election
Time Limit: 5000MS Memory Limit: 65536K
Total Submissions: 964 Accepted: 431
Description
In a country (my memory fails to say which), the candidates {1, 2 ..., N} are running in the parliamentary election. An opinion poll asks the question "For any two candidates of your own choice, which election result would make you happy?". The accepted answers are shown in the table below, where the candidates i and j are not necessarily different, i.e. it may happen that i=j. There are M poll answers, some of which may be similar or identical. The problem is to decide whether there can be an election outcome (It may happen that all candidates fail to be elected, or all are elected, or only a part of them are elected. All these are acceptable election outcomes.) that conforms to all M answers. We say that such an election outcome is perfect. The result of the problem is 1 if a perfect election outcome does exist and 0 otherwise.
Input
Each data set corresponds to an instance of the problem and starts with two integral numbers: 1≤N≤1000 and 1≤M≤1000000. The data set continues with M pairs ±i ±j of signed numbers, 1≤i,j≤N. Each pair encodes a poll answer as follows:
Accepted answers to the poll question Encoding
I would be happy if at least one from i and j is elected. +i +j
I would be happy if at least one from i and j is not elected. -i -j
I would be happy if i is elected or j is not elected or both events happen. +i -j
I would be happy if i is not elected or j is elected or both events happen. -i +j
The input data are separated by white spaces, terminate with an end of file, and are correct.
Output
For each data set the program prints the result of the encoded election problem. The result, 1 or 0, is printed on the standard output from the beginning of a line. There must be no empty lines on output.
Sample Input
3 3 +1 +2 -1 +2 -1 -3
2 3 -1 +2 -1 -2 +1 -2
2 4 -1 +2 -1 -2 +1 -2 +1 +2
2 8 +1 +2 +2 +1 +1 -2 +1 -2 -2 +1 -1 +1 -2 -2 +1 -1
Sample Output
1
1
0
1
Hint
For the first data set the result of the problem is 1; there are several perfect election outcomes, e.g. 1 is not elected, 2 is elected, 3 is not elected. The result for the second data set is justified by the perfect election outcome: 1 is not elected, 2 is not elected. The result for the third data set is 0. According to the answers -1 +2 and -1 -2 the candidate 1 must not be elected, whereas the answers +1 -2 and +1 +2 say that candidate 1 must be elected. There is no perfect election outcome. For the fourth data set notice that there are similar or identical poll answers and that some answers mention a single candidate. The result is 1.
题意:有N个候选人,给出M个限制条件。这些条件可以分成4类
1,+i +j 表示 i 和 j 至少选一个;
2,-i -j 表示 i 和 j 最多选一个;
3,+i -j 表示 选i 和 不选j 最少成立一个 ;
4,-i +j 表示 不选i 和 选j 最少成立一个;
问你有没有一种方案满足M个条件。
建图: 我用Ai表示i 被选上,!Ai表示i没有被选上。
对于1则有 非Ai -> Aj 和 非Aj -> Ai
对于2则有 Ai -> 非Aj 和 Aj -> 非Ai
对于3则有 Aj -> Ai 和 非Ai -> 非Aj
对于4则有 非Aj -> 非Ai 和 Ai -> Aj
记住三个符号六种基本建图方式,剩下的都可以修改:比如上面的4代表Ai and 非Aj=1,我们就是非Aj建图加上个Ai and Aj建图,自己画个图想想是不是?地址
AC代码:
#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <vector>
#include <algorithm>
#define MAXN 2000+10
#define INF 1000000
#define eps 1e-5
using namespace std;
vector<int> G[MAXN];
int low[MAXN], dfn[MAXN];
int dfs_clock;
int sccno[MAXN], scc_cnt;
stack<int> S;
bool Instack[MAXN];
int N, M;
void init()
{
for(int i = 1; i <= 2*N; i++) G[i].clear();
}
void getMap()
{
int i, j;
char op1, op2;
while(M--)
{
scanf(" %c%d %c%d", &op1, &i, &op2, &j);
if(op1 == '+' && op2 == '+')
{
G[i + N].push_back(j);
G[j + N].push_back(i);
}
else if(op1 == '-' && op2 == '-')
{
G[i].push_back(j + N);
G[j].push_back(i + N);
}
else if(op1 == '+' && op2 == '-')
{
G[i + N].push_back(j + N);//i若没有被选上 j一定没有被选上
G[j].push_back(i);//j被选上 i一定被选上
}
else
{
G[i].push_back(j);//i被选上 j一定被选上
G[j + N].push_back(i + N);//j没有被选上 i一定没有被选上
}
}
}
void tarjan(int u, int fa)
{
int v;
low[u] = dfn[u] = ++dfs_clock;
S.push(u);
Instack[u] = true;
for(int i = 0; i < G[u].size(); i++)
{
v = G[u][i];
if(!dfn[v])
{
tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else if(Instack[v])
low[u] = min(low[u], dfn[v]);
}
if(low[u] == dfn[u])
{
scc_cnt++;
for(;;)
{
v = S.top(); S.pop();
sccno[v] = scc_cnt;
Instack[v] = false;
if(v == u) break;
}
}
}
void find_cut(int l, int r)
{
memset(low, 0, sizeof(low));
memset(dfn, 0, sizeof(dfn));
memset(sccno, 0, sizeof(sccno));
memset(Instack, false, sizeof(Instack));
dfs_clock = scc_cnt = 0;
for(int i = l; i <= r; i++)
if(!dfn[i]) tarjan(i, -1);
}
void solve()
{
for(int i = 1; i <= N; i++)
{
if(sccno[i] == sccno[i+N])
{
printf("0\n");
return ;
}
}
printf("1\n");
}
int main()
{
while(scanf("%d%d", &N, &M) != EOF)
{
init();
getMap();
find_cut(1, 2*N);
solve();
}
return 0;
}
图论--2-SAT--POJ 3905 Perfect Election的更多相关文章
- POJ 3905 Perfect Election(2-sat)
POJ 3905 Perfect Election id=3905" target="_blank" style="">题目链接 思路:非常裸的 ...
- POJ 3905 Perfect Election (2-Sat)
Perfect Election Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 438 Accepted: 223 De ...
- POJ 3905 Perfect Election
2-SAT 裸题,搞之 #include<cstdio> #include<cstring> #include<cmath> #include<stack&g ...
- POJ 3905 Perfect Election (2-SAT 判断可行)
题意:有N个人参加选举,有M个条件,每个条件给出:i和j竞选与否会只要满足二者中的一项即可.问有没有方案使M个条件都满足. 分析:读懂题目即可发现是2-SAT的问题.因为只要每个条件中满足2个中的一个 ...
- POJ 3398 Perfect Service(树型动态规划,最小支配集)
POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...
- OpenJudge 2810(1543) 完美立方 / Poj 1543 Perfect Cubes
1.链接地址: http://bailian.openjudge.cn/practice/2810/ http://bailian.openjudge.cn/practice/1543/ http:/ ...
- POJ 3398 Perfect Service --最小支配集
题目链接:http://poj.org/problem?id=3398 这题可以用两种上述讲的两种算法解:http://www.cnblogs.com/whatbeg/p/3776612.html 第 ...
- poj 1543 Perfect Cubes(注意剪枝)
Perfect Cubes Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14901 Accepted: 7804 De ...
- POJ 1730 Perfect Pth Powers(暴力枚举)
题目链接: https://cn.vjudge.net/problem/POJ-1730 题目描述: We say that x is a perfect square if, for some in ...
随机推荐
- 工作中常用的Android系统ADB命令收集
工作中常用的Android系统ADB命令收集如下:先收藏以备以后查阅! adb --help //adb帮助 adb start-server //启动adb server adb kill-s ...
- synchronized 与 volatile 区别 还有 volatile 的含义
熟悉并发的同学一定知道在java中处理并发主要有两种方式: 1,synchronized关键字,这个大家应当都各种面试和笔试中经常遇到. 2,volatile修饰符的使用,相信这个修饰符大家平时在项目 ...
- Linux终端命令格式
01.终端命令格式 command [-options] [parameter] 说明: command:命令名,响应功能的英文单词或单词的缩写 [-options]:选项,可用来对命令进行控制,也可 ...
- 使用 PyQt5 实现图片查看器
一.前言 在学习 PyQt5 的过程中我会不断地做一些小的 Demo,用于让自己能够更好地理解和学习,这次要做的就是一个图片查看器,主要功能包括打开图片.拖动图片.放大和缩小图片. 最终实现的图片查看 ...
- 教你如何在工作中“偷懒”,python优雅的帮你解决
前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取htt ...
- HashMap主要方法源码分析(JDK1.8)
本篇从HashMap的put.get.remove方法入手,分析源码流程 (不涉及红黑树的具体算法) jkd1.8中HashMap的结构为数组.链表.红黑树的形式 (未转化红黑树时) (转 ...
- 【draft】Team project :Bing dictionary plug-in
课后~ 开会调研开会调研开会~ 在和Bing词典负责人进行了可行性的深入磋商后,我们对本次选题有了更加清晰的认识~困难好多~然而终于敲定了项目内容,我们的目标是这样一款神奇的插件,它帮你记录下新近查询 ...
- HashMap之KeySet分析
本篇涵盖 1.HashMap并不是用keySet来存储key的原因及证明 2.keySet方法返回后的remove.add操作原理 一.方法作用 概括一下 1.keySet方法返回map中包含的键的集 ...
- 哈密顿绕行世界问题 HDU2181
题目大意都比较简单,用vector存一下图,然后爆搜就可以了. #include<bits/stdc++.h> using namespace std; ; vector<]; bo ...
- C - Sweets Eating
规律题 前缀和+规律 先求前缀和...答案为c[i]=arr[i]+c[i-m]//i>m时. #include<bits/stdc++.h> using namespace std ...