图论--2-SAT--POJ 3905 Perfect Election
Perfect Election
Time Limit: 5000MS Memory Limit: 65536K
Total Submissions: 964 Accepted: 431
Description
In a country (my memory fails to say which), the candidates {1, 2 ..., N} are running in the parliamentary election. An opinion poll asks the question "For any two candidates of your own choice, which election result would make you happy?". The accepted answers are shown in the table below, where the candidates i and j are not necessarily different, i.e. it may happen that i=j. There are M poll answers, some of which may be similar or identical. The problem is to decide whether there can be an election outcome (It may happen that all candidates fail to be elected, or all are elected, or only a part of them are elected. All these are acceptable election outcomes.) that conforms to all M answers. We say that such an election outcome is perfect. The result of the problem is 1 if a perfect election outcome does exist and 0 otherwise.
Input
Each data set corresponds to an instance of the problem and starts with two integral numbers: 1≤N≤1000 and 1≤M≤1000000. The data set continues with M pairs ±i ±j of signed numbers, 1≤i,j≤N. Each pair encodes a poll answer as follows:
Accepted answers to the poll question Encoding
I would be happy if at least one from i and j is elected. +i +j
I would be happy if at least one from i and j is not elected. -i -j
I would be happy if i is elected or j is not elected or both events happen. +i -j
I would be happy if i is not elected or j is elected or both events happen. -i +j
The input data are separated by white spaces, terminate with an end of file, and are correct.
Output
For each data set the program prints the result of the encoded election problem. The result, 1 or 0, is printed on the standard output from the beginning of a line. There must be no empty lines on output.
Sample Input
3 3 +1 +2 -1 +2 -1 -3
2 3 -1 +2 -1 -2 +1 -2
2 4 -1 +2 -1 -2 +1 -2 +1 +2
2 8 +1 +2 +2 +1 +1 -2 +1 -2 -2 +1 -1 +1 -2 -2 +1 -1
Sample Output
1
1
0
1
Hint
For the first data set the result of the problem is 1; there are several perfect election outcomes, e.g. 1 is not elected, 2 is elected, 3 is not elected. The result for the second data set is justified by the perfect election outcome: 1 is not elected, 2 is not elected. The result for the third data set is 0. According to the answers -1 +2 and -1 -2 the candidate 1 must not be elected, whereas the answers +1 -2 and +1 +2 say that candidate 1 must be elected. There is no perfect election outcome. For the fourth data set notice that there are similar or identical poll answers and that some answers mention a single candidate. The result is 1.
题意:有N个候选人,给出M个限制条件。这些条件可以分成4类
1,+i +j 表示 i 和 j 至少选一个;
2,-i -j 表示 i 和 j 最多选一个;
3,+i -j 表示 选i 和 不选j 最少成立一个 ;
4,-i +j 表示 不选i 和 选j 最少成立一个;
问你有没有一种方案满足M个条件。
建图: 我用Ai表示i 被选上,!Ai表示i没有被选上。
对于1则有 非Ai -> Aj 和 非Aj -> Ai
对于2则有 Ai -> 非Aj 和 Aj -> 非Ai
对于3则有 Aj -> Ai 和 非Ai -> 非Aj
对于4则有 非Aj -> 非Ai 和 Ai -> Aj
记住三个符号六种基本建图方式,剩下的都可以修改:比如上面的4代表Ai and 非Aj=1,我们就是非Aj建图加上个Ai and Aj建图,自己画个图想想是不是?地址
AC代码:
#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <vector>
#include <algorithm>
#define MAXN 2000+10
#define INF 1000000
#define eps 1e-5
using namespace std;
vector<int> G[MAXN];
int low[MAXN], dfn[MAXN];
int dfs_clock;
int sccno[MAXN], scc_cnt;
stack<int> S;
bool Instack[MAXN];
int N, M;
void init()
{
for(int i = 1; i <= 2*N; i++) G[i].clear();
}
void getMap()
{
int i, j;
char op1, op2;
while(M--)
{
scanf(" %c%d %c%d", &op1, &i, &op2, &j);
if(op1 == '+' && op2 == '+')
{
G[i + N].push_back(j);
G[j + N].push_back(i);
}
else if(op1 == '-' && op2 == '-')
{
G[i].push_back(j + N);
G[j].push_back(i + N);
}
else if(op1 == '+' && op2 == '-')
{
G[i + N].push_back(j + N);//i若没有被选上 j一定没有被选上
G[j].push_back(i);//j被选上 i一定被选上
}
else
{
G[i].push_back(j);//i被选上 j一定被选上
G[j + N].push_back(i + N);//j没有被选上 i一定没有被选上
}
}
}
void tarjan(int u, int fa)
{
int v;
low[u] = dfn[u] = ++dfs_clock;
S.push(u);
Instack[u] = true;
for(int i = 0; i < G[u].size(); i++)
{
v = G[u][i];
if(!dfn[v])
{
tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else if(Instack[v])
low[u] = min(low[u], dfn[v]);
}
if(low[u] == dfn[u])
{
scc_cnt++;
for(;;)
{
v = S.top(); S.pop();
sccno[v] = scc_cnt;
Instack[v] = false;
if(v == u) break;
}
}
}
void find_cut(int l, int r)
{
memset(low, 0, sizeof(low));
memset(dfn, 0, sizeof(dfn));
memset(sccno, 0, sizeof(sccno));
memset(Instack, false, sizeof(Instack));
dfs_clock = scc_cnt = 0;
for(int i = l; i <= r; i++)
if(!dfn[i]) tarjan(i, -1);
}
void solve()
{
for(int i = 1; i <= N; i++)
{
if(sccno[i] == sccno[i+N])
{
printf("0\n");
return ;
}
}
printf("1\n");
}
int main()
{
while(scanf("%d%d", &N, &M) != EOF)
{
init();
getMap();
find_cut(1, 2*N);
solve();
}
return 0;
}
图论--2-SAT--POJ 3905 Perfect Election的更多相关文章
- POJ 3905 Perfect Election(2-sat)
POJ 3905 Perfect Election id=3905" target="_blank" style="">题目链接 思路:非常裸的 ...
- POJ 3905 Perfect Election (2-Sat)
Perfect Election Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 438 Accepted: 223 De ...
- POJ 3905 Perfect Election
2-SAT 裸题,搞之 #include<cstdio> #include<cstring> #include<cmath> #include<stack&g ...
- POJ 3905 Perfect Election (2-SAT 判断可行)
题意:有N个人参加选举,有M个条件,每个条件给出:i和j竞选与否会只要满足二者中的一项即可.问有没有方案使M个条件都满足. 分析:读懂题目即可发现是2-SAT的问题.因为只要每个条件中满足2个中的一个 ...
- POJ 3398 Perfect Service(树型动态规划,最小支配集)
POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...
- OpenJudge 2810(1543) 完美立方 / Poj 1543 Perfect Cubes
1.链接地址: http://bailian.openjudge.cn/practice/2810/ http://bailian.openjudge.cn/practice/1543/ http:/ ...
- POJ 3398 Perfect Service --最小支配集
题目链接:http://poj.org/problem?id=3398 这题可以用两种上述讲的两种算法解:http://www.cnblogs.com/whatbeg/p/3776612.html 第 ...
- poj 1543 Perfect Cubes(注意剪枝)
Perfect Cubes Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14901 Accepted: 7804 De ...
- POJ 1730 Perfect Pth Powers(暴力枚举)
题目链接: https://cn.vjudge.net/problem/POJ-1730 题目描述: We say that x is a perfect square if, for some in ...
随机推荐
- spring08
这里主要学习的是关于spring之后中与ioc不同的aop技术:面向切面编程是spring基石之一: 解决代码混乱文体,代码分散,当部分修改时,要逐个修改当更多的日志以及验证介入之后会使代码变得更加的 ...
- C语言 文件复制
有很多人会问,学会C语言能干啥?,就只能控制台敲个数学题,做个界面都没有的贪吃蛇么? 刚开始的我,也是这样想的,但慢慢深入C语言后,我才领略到C的强大,C的万能.小到游戏破解,加解密算法,大到设备驱动 ...
- 【第二章】黎姿的python学习笔记
- 【硬核】使用替罪羊树实现KD-Tree的增删改查
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习的第16篇文章,我们来继续上周KD-Tree的话题. 如果有没有看过上篇文章或者是最新关注的小伙伴,可以点击一下下方的传送门: ...
- 正则表达式 regex
正则表达式存在于String api下的matches方法 常用正常表达式: 字符 x 字符 x \\ 反斜线字符 字符类 [abc] a.b 或 c(简单类) [^abc] 任何字符,除了 a.b ...
- 学习《深入应用c++11》2
&& universal references(未定的引用类型),它必须被初始化,它是左值还是右值取决于它的初始化,如果&&被一个左值初始化,它就是一个左值;如果它 ...
- 广告行业中那些趣事系列9:一网打尽Youtube深度学习推荐系统
最新最全的文章请关注我的微信公众号:数据拾光者. 摘要:本篇主要分析Youtube深度学习推荐系统,借鉴模型框架以及工程中优秀的解决方案从而应用于实际项目.首先讲了下用户.广告主和抖音这一类视频平台三 ...
- syncronized如何上锁
上锁,根据操作系统所说的原则,对共享变量上锁,对临界区上锁.谁访问临界资源?就给谁上锁 同步监视器,它上锁的对象. 1.用关键字给方法上锁 2.用synchronized代码块上锁 默认上锁对象:th ...
- AJ学IOS 之微博项目实战(8)用AFNetworking和SDWebImage简单加载微博数据
AJ分享,必须精品 一:效果 没有图文混排,也没有复杂的UI,仅仅是简单的显示出微博数据,主要介绍AFNetworking和SDWebImage的简单用法 二:加载数据AFNetworking AFN ...
- Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(八)之Reusing Classes
The trick is to use the classes without soiling the existing code. 1. composition--simply create obj ...