There are n cities numbered from 1 to n in Berland. Some of them are connected by two-way roads. Each road has its own length — an integer number from 1 to 1000. It is known that from each city it is possible to get to any other city by existing roads. Also for each pair of cities it is known the shortest distance between them. Berland Government plans to build k new roads. For each of the planned road it is known its length, and what cities it will connect. To control the correctness of the construction of new roads, after the opening of another road Berland government wants to check the sum of the shortest distances between all pairs of cities. Help them — for a given matrix of shortest distances on the old roads and plans of all new roads, find out how the sum of the shortest distances between all pairs of cities changes after construction of each road.

Input

The first line contains integer n (2 ≤ n ≤ 300) — amount of cities in Berland. Then there follow n lines with n integer numbers each — the matrix of shortest distances. j-th integer in the i-th row — di, j, the shortest distance between cities i and j. It is guaranteed that di, i = 0, di, j = dj, i, and a given matrix is a matrix of shortest distances for some set of two-way roads with integer lengths from 1 to 1000, such that from each city it is possible to get to any other city using these roads.

Next line contains integer k (1 ≤ k ≤ 300) — amount of planned roads. Following k lines contain the description of the planned roads. Each road is described by three space-separated integers aibici (1 ≤ ai, bi ≤ n, ai ≠ bi, 1 ≤ ci ≤ 1000) — ai and bi — pair of cities, which the road connects, ci — the length of the road. It can be several roads between a pair of cities, but no road connects the city with itself.

Output

Output k space-separated integers qi (1 ≤ i ≤ k). qi should be equal to the sum of shortest distances between all pairs of cities after the construction of roads with indexes from 1 to i. Roads are numbered from 1 in the input order. Each pair of cities should be taken into account in the sum exactly once, i. e. we count unordered pairs.

Examples

Input
2
0 5
5 0
1
1 2 3
Output
3 
Input
3
0 4 5
4 0 9
5 9 0
2
2 3 8
1 2 1
Output
17 12 

思路:要求每一对的最短路,直接想到floyd,但是每次都全跑一次一定会超时,那就每次把修改的边作为中间点进行floyd即可,代码如下:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL; const int maxm = ; int G[maxm][maxm];
int N, K; void calculate() {
for(int k = ; k <= N; ++k)
for(int i = ; i <= N; ++i)
for(int j = ; j <= N; ++j)
G[i][j] = min(G[i][j], G[i][k] + G[k][j]);
} int main() {
scanf("%d", &N);
int t;
for(int i = ; i <= N; ++i)
for(int j = ; j <= N; ++j) {
scanf("%d", &G[i][j]);
}
calculate();
scanf("%d", &K);
int u, v;
for(int f = ; f < K; ++f) {
scanf("%d%d%d", &u, &v, &t);
LL ans = ;
if(t < G[u][v]) {
G[u][v] = G[v][u] = t;
for(int i = ; i <= N; ++i)
for(int j = ; j <= N; ++j) {
G[i][j] = min(G[i][j], min(G[i][u]+G[u][j], G[i][v]+G[v][j]));
G[j][i] = G[i][j];
}
}
for(int i = ; i < N; ++i)
for(int j = i+; j <= N; ++j)
ans += G[i][j];
printf("%I64d ", ans);
}
return ;
}

Day4 - M - Roads in Berland CodeForces - 25C的更多相关文章

  1. Codeforces Beta Round #25 (Div. 2 Only) C. Roads in Berland

    C. Roads in Berland time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  2. CodeForces 25C(Floyed 最短路)

    F - Roads in Berland Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I6 ...

  3. 【Codeforces 25C】Roads in Berland

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 用floyd思想. 求出来这条新加的边影响到的点对即可. 然后尝试更新点对之间的最短路就好. 更新之后把差值从答案里面减掉. [代码] #in ...

  4. Roads in Berland(图论)

    Description There are n cities numbered from 1 to n in Berland. Some of them are connected by two-wa ...

  5. C. Roads in Berland

    题目链接: http://codeforces.com/problemset/problem/25/C 题意: 给一个最初的所有点与点之间的最短距离的矩阵.然后向图里加边,原有的边不变,问加边后的各个 ...

  6. Chemistry in Berland CodeForces - 846E

    题目 题意: 有n种化学物质,第i种物质现有bi千克,需要ai千克.有n-1种,编号为2-n的转换方式,每种都为(x,k),第i行是编号为i+1的转换方式,编号为i的转换方式(xi,ki)表示ki千克 ...

  7. Codeforces Round #Pi (Div. 2) E. President and Roads tarjan+最短路

    E. President and RoadsTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/567 ...

  8. 【CodeForces 567E】President and Roads(最短路)

    Description Berland has n cities, the capital is located in city s, and the historic home town of th ...

  9. codeforces 228E The Road to Berland is Paved With Good Intentions(2-SAT)

    Berland has n cities, some of them are connected by bidirectional roads. For each road we know wheth ...

随机推荐

  1. UIScrollView学习指南

    --前言 笔者结合自己的工作经验,梳理关于UIScrollView究竟需要掌握哪些知识才算是一个好手.至于具体的实施方案,网上资源很多,自行了解吧. --正文 1.涉及到滚动和放大的功能,优先考虑使用 ...

  2. python开发接口

    享一段代码,开发了3个接口:            1.上传文件            2.查看所有文件            3.下载文件 使用python开发,需要安装flask模块,使用pip ...

  3. Python学习第十三课——re(正则表达式)模块

    .的用法 import re s = 'fhsdjakaxdsancjh' # .代表一个元素,完成模糊匹配 res = re.findall("a..x", s) # 找到s中以 ...

  4. Intellij IDEA 快捷键 与 环境设置

    快捷键 Ctrl+Shift+F10,运行 Ctrl+Alt+O,导入包,自动修正 Ctrl+Alt+L,格式化代码 Ctrl+Y,删除一整行 Alt + Insert,生成get/set方法 Ctr ...

  5. mysql :将其中两个数据的某一个字段合拼成一句

    SELECT xq.*, ts.xu_qiu_id, ts.content FROM wx_xu_qiu xq LEFT JOIN (SELECT xu_qiu_id, GROUP_CONCAT(co ...

  6. C语言程序设计-现代方法(笔记3)

    第十三章 字符串 1.字符串字面量(13.1) 字符串字面量:用一对双引号括起来的字符序列.字符串字面量可以像字符常量一样包含转义字序列. 在字符串字面量中小心使用八进制和十六进制的转义序列. 字符串 ...

  7. 蓝桥杯java 迷宫

    0101010100101100100101011001011010010000100010101000001000100000101010010000100000001001100110100101 ...

  8. LeetCode刷题笔记和想法(C++)

    主要用于记录在LeetCode刷题的过程中学习到的一些思想和自己的想法,希望通过leetcode提升自己的编程素养 :p 高效leetcode刷题小诀窍(这只是目前对我自己而言的小方法,之后会根据自己 ...

  9. 五、ibatis中#和$的区别和使用

    1.#和$两者含义不同#:会进行预编译,而且进行类型匹配:$:不进行数据类型匹配.示例:变量name的类型是string, 值是"张三"    $name$ = 张三    #na ...

  10. Ajax接收Json数据,调用template模板循环渲染页面的方法

    一. 后台接口吐出JSON数据 后台php接口中,需要写三个部分: 1.1 开头header规定数据格式: header("content-type:application/json;cha ...