假设以下情景,有一块木板,板上钉上了一些钉子,这些钉子可以由一些细绳连接起来。假设每个钉子可以通过一根或者多根细绳连接起来,那么一定存在这样的情况,即用最少的细绳把所有钉子连接起来。

更为实际的情景是这样的情况,在某地分布着N个村庄,现在需要在N个村庄之间修路,每个村庄之前的距离不同,问怎么修最短的路,将各个村庄连接起来。

以上这些问题都可以归纳为最小生成树问题,用正式的表述方法描述为:给定一个无方向的带权图G=(V, E),最小生成树为集合T, T是以最小代价连接V中所有顶点所用边E的最小集合。 集合T中的边能够形成一颗树,这是因为每个节点(除了根节点)都能向上找到它的一个父节点。

解决最小生成树问题已经有前人开道,Prime算法和Kruskal算法,分别从点和边下手解决了该问题。

Prim算法

Prim算法是一种产生最小生成树的算法。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。

Prim算法从任意一个顶点开始,每次选择一个与当前顶点集最近的一个顶点,并将两顶点之间的边加入到树中。Prim算法在找当前最近顶点时使用到了贪婪算法。

算法描述:

  1. 在一个加权连通图中,顶点集合V,边集合为E
  2. 任意选出一个点作为初始顶点,标记为book,计算所有与之相连接的点的距离,选择距离最短的,标记book.
  3. 重复以下操作,直到所有点都被标记为book

    在剩下的点钟,计算与已标记book点距离最小的点,标记book,证明加入了最小生成树。

下面我们来看一个最小生成树生成的过程:

1 起初,从顶点a开始生成最小生成树

2 选择顶点a后,顶点a置成book(涂黑),计算周围与它连接的点的距离:

3 与之相连的点距离分别为7,4,选择C点距离最短,涂黑C,同时将这条边高亮加入最小生成树:

4 计算与a,c相连的点的距离(已经涂黑的点不计算),因为与a相连的已经计算过了,只需要计算与c相连的点,如果一个点与a,c都相连,那么它与a的距离之前已经计算过了,如果它与c的距离更近,则更新距离值,这里计算的是未涂黑的点距离涂黑的点的最近距离,很明显,ba7bc的距离为6,更新b和已访问的点集距离为6,而f,ec的距离分别是8,9,所以还是涂黑b,高亮边bc

5 接下来很明显,d距离b最短,将d涂黑,bd高亮:

6 f距离d7,距离b4,更新它的最短距离值是4,所以涂黑f,高亮bf

7 最后只有e了:

针对如上的图,代码实例如下(配合注释理解):

#include<iostream>
#define INF 10000
using namespace std;
const int N = 6;
bool book[N];
int dist[N] = { 0 };
int graph[N][N] = { {INF,7,4,INF,INF,INF}, //INF代表两点之间不可达
{7,INF,6,2,INF,4},
{4,6,INF,INF,9,8},
{INF,2,INF,INF,INF,7},
{INF,INF,9,INF,INF,1},
{INF,4,8,7,1,INF}
};
int Prim(int cur) {//选择起始点
int index = cur;
int sum = 0;
int i = 0;
int j = 0;
cout << index << " ";//输出index可以输出路径
memset(book, false, sizeof(book));//初始化
book[cur] = true;//标记初始点
for (; i < N; ++i)
dist[i] = graph[cur][i];//初始化,并令每个与cur点邻接点的距离存入dist
for (i = 1; i < N; ++i) {
int minor = INF;
for (j = 0; j < N; ++j) {//找到与index相接的最短路径
if (!book[j] && dist[j] < minor) {
minor = dist[j];
index = j;
}
}
book[index] = true;
cout << index << " ";
sum += minor;
for (j = 0; j < N; ++j) {//重新初始化dist,找到与index邻接的点
if (!book[j] && dist[j] > graph[index][j])
dist[j] = graph[index][j];
}
}
cout << endl;
return sum;//返回最小生成树的总路径值
}
int main() {
//遍历每个点为起始点
for (int i = 0; i < N; ++i)
cout << Prim(i) << endl;
//cout<<Prim(0) << endl;//从顶点0开始
return 0;
}

Kruskal算法

Kruskal是另一个计算最小生成树的算法,其算法原理如下。首先,将每个顶点放入其自身的数据集合中。然后,按照权值的升序来选择边。当选择每条边时,判断定义边的顶点是否在不同的数据集中。如果是,将此边插入最小生成树的集合中,同时,将集合中包含每个顶点的联合体取出,如果不是,就移动到下一条边。重复这个过程直到所有的边都探查过。

下面还是用一组图示来表现算法的过程:

1 初始情况,一个联通图,定义针对边的数据结构,包括起点,终点,边长度:

typedef struct _node{
int val; //长度
int start; //边的起点
int end; //边的终点
}Node;

2 在算法中首先取出所有的边,将边按照长短排序,然后首先取出最短的边,将a,e放入同一个集合里,在实现中我们使用到了并查集的概念:

如果有小伙伴不懂并查集的话,请点传送门

3 继续找到第二短的边,将c, d再放入同一个集合里:

4 继续找,找到第三短的边ab,因为a,e已经在一个集合里,再将b加入:

5 继续找,找到b,e,因为b,e已经同属于一个集合,连起来的话就形成环了,所以边be不加入最小生成树:

6 再找,找到bc,因为c,d是一个集合的,a,b,e是一个集合,所以再合并这两个集合:

这样所有的点都归到一个集合里,生成了最小生成树。

根据上图实现的代码如下:

#include<iostream>
#define N 7
using namespace std;
struct Node {
int val; //长度
int start; //边的起点
int end; //边的终点
};
Node V[N];
int cmp(const void *a, const void *b) {
return (*(Node *)a).val - (*(Node*)b).val;
}
//edge保存结点属性
int edge[N][3] = { { 0, 1, 3 },
{ 0, 4, 1 },
{ 1, 2, 5 },
{ 1, 4, 4 },
{ 2, 3, 2 },
{ 2, 4, 6 },
{ 3, 4, 7}
};
int father[N] = { 0 };
int cap[N] = { 0 }; //初始化集合,让所有的点都各成一个集合,每个集合都只包含自己
//并查集初始化,先令每个结点的父节点为自己
void make_set() {
for (int i = 0; i < N; ++i) {
father[i] = i;
cap[i] = 1;//集合大小(势力大小)
}
} //递归寻找所属集合的父节点
//并且在寻找父节点的同时重置所属集合
int find_set(int x) {
if (x != father[x])
father[x] = find_set(father[x]);
return father[x];
} //将x,y合并到同一个集合
void Union(int x, int y) {
x = find_set(x);
y = find_set(y);
if (x == y)
return;
if (cap[x] < cap[y])
father[x] = find_set(y);
else {//归左思想
if (cap[x] == cap[y])
cap[x]++;
father[y] = find_set(x);
}
} int Kruskal(int n) {
int sum = 0;
make_set();
for (int i = 0; i < N; ++i) {
if (find_set(V[i].start) != find_set(V[i].end)) {
Union(V[i].start, V[i].end);
sum += V[i].val;
}
}
return sum;
} int main() {
for (int i = 0; i < N; ++i) {
V[i].start = edge[i][0];
V[i].end = edge[i][1];
V[i].val = edge[i][2];
}
qsort(V, N, sizeof(V[0]), cmp);
cout << Kruskal(0) << endl;
}

最小生成树算法【图解】--一文带你理解什么是Prim算法和Kruskal算法的更多相关文章

  1. 最小生成树之Prim算法和Kruskal算法

    最小生成树算法 一个连通图可能有多棵生成树,而最小生成树是一副连通加权无向图中一颗权值最小的生成树,它可以根据Prim算法和Kruskal算法得出,这两个算法分别从点和边的角度来解决. Prim算法 ...

  2. 最小生成树——Prim算法和Kruskal算法

    洛谷P3366 最小生成树板子题 这篇博客介绍两个算法:Prim算法和Kruskal算法,两个算法各有优劣 一般来说当图比较稀疏的时候,Kruskal算法比较快 而当图很密集,Prim算法就大显身手了 ...

  3. 【数据结构】最小生成树之prim算法和kruskal算法

    在日常生活中解决问题经常需要考虑最优的问题,而最小生成树就是其中的一种.看了很多博客,先总结如下,只需要您20分钟的时间,就能完全理解. 比如:有四个村庄要修四条路,让村子能两两联系起来,这时就有最优 ...

  4. 转载:最小生成树-Prim算法和Kruskal算法

    本文摘自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 最小生成树-Prim算法和Kruskal算法 Prim算 ...

  5. java实现最小生成树的prim算法和kruskal算法

    在边赋权图中,权值总和最小的生成树称为最小生成树.构造最小生成树有两种算法,分别是prim算法和kruskal算法.在边赋权图中,如下图所示: 在上述赋权图中,可以看到图的顶点编号和顶点之间邻接边的权 ...

  6. 最小生成树Prim算法和Kruskal算法

    Prim算法(使用visited数组实现) Prim算法求最小生成树的时候和边数无关,和顶点树有关,所以适合求解稠密网的最小生成树. Prim算法的步骤包括: 1. 将一个图分为两部分,一部分归为点集 ...

  7. Prim算法和Kruskal算法的正确性证明

    今天学习了Prim算法和Kruskal算法,因为书中只给出了算法的实现,而没有给出关于算法正确性的证明,所以尝试着给出了自己的证明.刚才看了一下<算法>一书中的相关章节,使用了切分定理来证 ...

  8. Prim算法和Kruskal算法

       Prim算法和Kruskal算法都能从连通图找出最小生成树.区别在于Prim算法是以某个顶点出发挨个找,而Kruskal是先排序边,每次选出最短距离的边再找. 一.Prim(普里姆算法)算法: ...

  9. 最小生成树---Prim算法和Kruskal算法

    Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...

随机推荐

  1. (转)协议森林06 瑞士军刀 (ICMP协议)

    协议森林06 瑞士军刀 (ICMP协议) 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 到现在为止,我们讲解了网络层中最重要的I ...

  2. C# 微信 生活助手 空气质量 天气预报等 效果展示 数据抓取 (二)

    此文主要是 中国天气网和中国环境监测总站的数据抓取 打算开放全部数据抓取源代码 已在服务器上 稳定运行半个月 webapi http://api.xuzhiheng.cn/ 常量 /// <su ...

  3. AspNetCore3.1_Secutiry源码解析_5_Authentication_OAuth

    title: "AspNetCore3.1_Secutiry源码解析_5_Authentication_OAuth" date: 2020-03-24T23:27:45+08:00 ...

  4. linux入门系列18--Web服务之Apache服务2

    接上一篇文章,在了解Apache基本配置以及SELinux相关知识后,继续演示Apache提供的虚拟主机功能以及访问控制方式. 如果还没看上一篇的建议先查看后再来,上篇文章"linux入门系 ...

  5. 让 Linux 防火墙新秀 nftables 为你的 VPS 保驾护航

    上篇文章 给大家介绍了 nftables 的优点以及基本的使用方法,它的优点在于直接在用户态把网络规则编译成字节码,然后由内核的虚拟机执行,尽管和 iptables 一样都是基于 netfilter, ...

  6. 国际惯例,Hello World。

    c语言: #include<stdio.h> int main() { printf("Hello World!\n"); ; } C++: #include<i ...

  7. vue 2

    目录 复习 今日 指令 条件指令 循环指令 评论案例 解决插值表达式符号冲突 总结 组件 局部组件 全局组件 组件间的交互:父传子 组件间的交互:子传父 复习 """ 1 ...

  8. 安装RationalRose的问题解决

    列出大问题:在这一步无法进行下一步,直接就只能退出. 翻译过来的意思是:IBM安装程序被完全下载之前就终止了,大概是这个意思. 然后我就直接进了IBM的官网看了一下产品支持,上面解释说是组件clear ...

  9. 加油站问题 Gas Station

    2019-06-01 17:09:30 问题描述: 问题求解: 其实本题本质上是一个数学题. [定理] 对于一个循环数组,如果这个数组整体和 SUM >= 0,那么必然可以在数组中找到这么一个元 ...

  10. 基于 HTML5 WebGL 的 智慧楼宇能源监控系统

    前言 21世纪,在能源危机和全球气候变暖的压力下,太阳能等可再生能源越来越受到关注,其中光伏建筑一体化逐渐成为绿色发展方式和生活方式,加强节能降耗,支持低碳产业和新能源.可再生能源发展,也已经成为国家 ...